Home | << 1 >> |
![]() |
Affolter, C., Kedzierska, J., Vielma, T., Weisse, B., & Aiyangar, A. (2020). Estimating lumbar passive stiffness behaviour from subject-specific finite element models and in vivo 6DOF kinematics. J. Biomech., 102, 11 pp.
Abstract: Passive rotational stiffness of the osseo-ligamentous spine is an important input parameter for estimating in-vivo spinal loading using musculoskeletal models. These data are typically acquired from cadaveric testing. Increasingly, they are also estimated from subject-specific imaging-based finite element (FE) models, which are typically built from CT/MR data obtained in supine position and employ pure rotation kinematics. We explored the sensitivity of FE-based lumbar passive rotational stiffness to two aspects of functional in-vivo kinematics: (a) passive strain changes from supine to upright standing position, and (b) in-vivo coupled translation-rotation kinematics. We developed subject-specific FE models of four subjects' L4L5 segments from supine CT images. Sagittally symmetric flexion was simulated in two ways: (i) pure flexion up to 12 degrees under a 500 N follower load directly from the supine pose. (ii) First, a displacement-based approach was implemented to attain the upright pose, as measured using Dynamic Stereo X-ray (DSX) imaging. We then simulated in-vivo flexion using DSX imaging-derived kinematics. Datasets from weight-bearing motion with three different external weights [(4.5 kg), (9.1 kg), (13.6 kg)] were used. Accounting for supine-upright motion generated compressive pre-loads approximate to 468 N (+/- 188 N) and a “pre-torque” approximate to 2.5 Nm (+/- 2.2 Nm), corresponding to 25% of the reaction moment at 10 degrees flexion (case (i)). Rotational stiffness estimates from DSX-based coupled translation-rotation kinematics were substantially higher compared to pure flexion. Reaction Moments were almost 90% and 60% higher at 5 degrees and 10 degrees of L4L5 flexion, respectively. Within-subject differences in rotational stiffness based on external weight were small, although between-subject variations were large. (C) 2020 Elsevier Ltd. All rights reserved.
|
Aiyangar, A. K., Vivanco, J., Au, A. G., Anderson, P. A., Smith, E. L., & Ploeg, H. L. (2014). Dependence of Anisotropy of Human Lumbar Vertebral Trabecular Bone on Quantitative Computed Tomography-Based Apparent Density. J. Biomech. Eng.-Trans. ASME, 136(9), 10 pp.
Abstract: Most studies investigating human lumbar vertebral trabecular bone (HVTB) mechanical property-density relationships have presented results for the superior-inferior (SI), or “ on-axis” direction. Equivalent, directly measured data from mechanical testing in the transverse (TR) direction are sparse and quantitative computed tomography (QCT) density-dependent variations in the anisotropy ratio of HVTB have not been adequately studied. The current study aimed to investigate the dependence of HVTB mechanical anisotropy ratio on QCT density by quantifying the empirical relationships between QCT-based apparent density of HVTB and its apparent compressive mechanical propertieselastic modulus (E-app), yield strength (sigma(y)), and yield strain (epsilon(y))-in the SI and TR directions for future clinical QCT-based continuum finite element modeling of HVTB. A total of 51 cylindrical cores (33 axial and 18 transverse) were extracted from four L1 human lumbar cadaveric vertebrae. Intact vertebrae were scanned in a clinical resolution computed tomography (CT) scanner prior to specimen extraction to obtain QCT density, rho(CT). Additionally, physically measured apparent density, computed as ash weight over wet, bulk volume, rho(app), showed significant correlation with rho(CT) [rho(CT) = 1.0568 x rho(app), r = 0.86]. Specimens were compression tested at room temperature using the Zetos bone loading and bioreactor system. Apparent elastic modulus (E-app) and yield strength (sigma(y)) were linearly related to the rho(CT) in the axial direction [E-SI = 1493.8 x (rho(CT)), r = 0.77, p < 0.01; sigma(Y,SI) = 6.9 x (rho(CT)) = 0.13, r = 0.76, p < 0.01] while a power-law relation provided the best fit in the transverse direction [E-TR 3349.1 x (rho(CT))(1.94), r = 0.89, p < 0.01; sigma(Y,TR) 18.81 x (rho(CT)) 1.83, r = 0.83, p < 0.01]. No significant correlation was found between epsilon(y) and rho(CT) in either direction. E-app and sigma(y) in the axial direction were larger compared to the transverse direction by a factor of 3.2 and 2.3, respectively, on average. Furthermore, the degree of anisotropy decreased with increasing density. Comparatively, epsilon(y) exhibited only a mild, but statistically significant anisotropy: transverse strains were larger than those in the axial direction by 30%, on average. Ability to map apparent mechanical properties in the transverse direction, in addition to the axial direction, from CT-based densitometric measures allows incorporation of transverse properties in finite element models based on clinical CT data, partially offsetting the inability of continuum models to accurately represent trabecular architectural variations.
|
Baier, R. V., Raggio, J. I. C., Arancibia, C. T., Bustamante, M., Perez, L., Burda, I., et al. (2021). Structure-function assessment of 3D-printed porous scaffolds by a low-cost/ open source fused filament fabrication printer. Mater. Sci. Eng. C-Mater. Biol. Appl., 123, 111945.
Abstract: Additive manufacturing encompasses a plethora of techniques to manufacture structures from a computational model. Among them, fused filament fabrication (FFF) relies on heating thermoplastics to their fusion point and extruding the material through a nozzle in a controlled pattern. FFF is a suitable technique for tissue engineering, given that allows the fabrication of 3D-scaffolds, which are utilized for tissue regeneration purposes. The objective of this study is to assess a low-cost/open-source 3D printer (In-House), by manufacturing both solid and porous samples with relevant microarchitecture in the physiological range (100?500 ?m pore size), using an equivalent commercial counterpart for comparison. For this, compressive tests in solid and porous scaffolds manufactured in both printers were performed, comparing the results with finite element analysis (FEA) models. Additionally, a microarchitectural analysis was done in samples from both printers, comparing the measurements of both pore size and porosity to their corresponding computer-aided design (CAD) models. Moreover, a preliminary biological assessment was performed using scaffolds from our In-House printer, measuring cell adhesion efficiency. Finally, Fourier transform infrared spectroscopy ? attenuated total reflectance (FTIR?ATR) was performed to evaluate chemical changes in the material (polylactic acid) after fabrication in each printer. The results show that the In-House printer achieved generally better mechanical behavior and resolution capacity than its commercial counterpart, by comparing with their FEA and CAD models, respectively. Moreover, a preliminary biological assessment indicates the feasibility of the In-House printer to be used in tissue engineering applications. The results also show the influence of pore geometry on mechanical properties of 3D-scaffolds and demonstrate that properties such as the apparent elastic modulus (Eapp) can be controlled in 3D-printed scaffolds.
|
Contreras-Raggio, J. I., Arancibia, C. T., Millan, C., Ploeg, H. L., Aiyangar, A., & Vivanco, J. F. (2022). Height-to-Diameter Ratio and Porosity Strongly Influence Bulk Compressive Mechanical Properties of 3D-Printed Polymer Scaffolds. Polymers, 14(22), 5017.
Abstract: Although the architectural design parameters of 3D-printed polymer-based scaffolds-porosity, height-to-diameter (H/D) ratio and pore size-are significant determinants of their mechanical integrity, their impact has not been explicitly discussed when reporting bulk mechanical properties. Controlled architectures were designed by systematically varying porosity (30-75%, H/D ratio (0.5-2.0) and pore size (0.25-1.0 mm) and fabricated using fused filament fabrication technique. The influence of the three parameters on compressive mechanical properties-apparent elastic modulus E-app, bulk yield stress sigma(y) and yield strain epsilon(y)-were investigated through a multiple linear regression analysis. H/D ratio and porosity exhibited strong influence on the mechanical behavior, resulting in variations in mean E-app of 60% and 95%, respectively. sigma(y) was comparatively less sensitive to H/D ratio over the range investigated in this study, with 15% variation in mean values. In contrast, porosity resulted in almost 100% variation in mean sigma(y) values. Pore size was not a significant factor for mechanical behavior, although it is a critical factor in the biological behavior of the scaffolds. Quantifying the influence of porosity, H/D ratio and pore size on bench-top tested bulk mechanical properties can help optimize the development of bone scaffolds from a biomechanical perspective.
Keywords: polymer scaffolds; 3D printing; height; diameter ratio; porosity; pore size; mechanical properties
|
Kosterhon, M., Müller, A., Rockenfeller, R., Aiyangar, A. K., Gruber, K., Ringel, F., et al. (2024). Invasiveness of decompression surgery affects modeled lumbar spine kinetics in patients with degenerative spondylolisthesis. Front. Bioeng. Biotechnol., 11, 1281119.
Abstract: Introduction: The surgical treatment of degenerative spondylolisthesis with accompanying spinal stenosis focuses mainly on decompression of the spinal canal with or without additional fusion by means of a dorsal spondylodesis. Currently, one main decision criterion for additional fusion is the presence of instability in flexion and extension X-rays. In cases of mild and stable spondylolisthesis, the optimal treatment remains a subject of ongoing debate. There exist different opinions on whether performing a fusion directly together with decompression has a potential benefit for patients or constitutes overtreatment. As X-ray images do not provide any information about internal biomechanical forces, computer simulation of individual patients might be a tool to gain a set of new decision criteria for those cases.
Methods: To evaluate the biomechanical effects resulting from different decompression techniques, we developed a lumbar spine model using forward dynamic-based multibody simulation (FD_MBS). Preoperative CT data of 15 patients with degenerative spondylolisthesis at the level L4/L5 who underwent spinal decompression were identified retrospectively. Based on the segmented vertebrae, 15 individualized models were built. To establish a reference for comparison, we simulated a standardized flexion movement (intact) for each model. Subsequently, we performed virtual unilateral and bilateral interlaminar fenestration (uILF, bILF) and laminectomy (LAM) by removing the respective ligaments in each model. Afterward, the standardized flexion movement was simulated again for each case and decompression method, allowing us to compare the outcomes with the reference. This comprehensive approach enables us to assess the biomechanical implications of different surgical approaches and gain valuable insights into their effects on lumbar spine functionality. Results: Our findings reveal significant changes in the biomechanics of vertebrae and intervertebral discs (IVDs) as a result of different decompression techniques. As the invasiveness of decompression increases, the moment transmitted on the vertebrae significantly rises, following the sequence intact -> uILF -> bILF -> LAM. Conversely, we observed a reduction in anterior-posterior shear forces within the IVDs at the levels L3/L4 and L4/L5 following LAM. Conclusion: Our findings showed that it was feasible to forecast lumbar spine kinematics after three distinct decompression methods, which might be helpful in future clinical applications. |
Vallejos Baier, R., Contreras Raggio, J. I., Millán Giovanetti, C., Palza, H., Burda, I., Terrasi, G., et al. (2022). Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds. Mater. Sci. Eng. C, 134, 112540.
Abstract: Direct ink writing (DIW) is a promising extrusion-based 3D printing technology, which employs an ink-deposition nozzle to fabricate 3D scaffold structures with customizable ink formulations for tissue engineering applications. However, determining the optimal DIW process parameters such as temperature, pressure, and speed for the specific ink is essential to achieve high reproducibility of the designed geometry and subsequent mechano-biological performance for different applications, particularly for porous scaffolds of finite sizes (total volume > 1000 mm3) and controlled pore size and porosity. The goal of this study was to evaluate the feasibility of fabricating Polycaprolactone (PCL) and bio-active glass (BG) composite-based 3D scaffolds of finite size using DIW. 3D-scaffolds were fabricated either as cylinders (10 mm diameter; 15 mm height) or cubes (5 × 5 × 5 mm3) with height/width aspect ratios of 1.5 and 1, respectively. A rheological characterization of the PCL-BG inks was performed before printing to determine the optimal printing parameters such as pressure and speed for printing at 110 °C. Microstructural properties of the scaffolds were analyzed in terms of overall scaffold porosity, and in situ pore size assessments in each layer (36 pores/layer; 1764 pores per specimen) during their fabrication. Measured porosity of the fabricated specimens�PCL: =46.94%, SD = 1.61; PCL-10 wt%BG: = 48.29%, SD = 5.95; and PCL-20 wt% BG: =50.87%, SD = 2.45�matched well with the designed porosity of 50%. Mean pore sizes�PCL [ = 0.37 mm (SD = 0.03)], PCL-10%BG [ = 0.38 mm (SD = 0.07)] and PCL-20% BG [ = 0.37 mm (SD = 0.04)]�were slightly fairly close to the designed pore size of 0.4 mm. Nevertheless there was a small but consistent, statistically significant (p < 0.0001) decrease in pore size from the first printed layer (PCL: 0.39 mm; PCL-10%BG: 0.4 mm; PCL-20%BG: 0.41 mm) to the last. SEM and micro-CT imaging revealed consistent BG particle distribution across the layers and throughout the specimens. Cell adhesion experiments revealed similar cell adhesion of PCL-20 wt% BG to pure PCL, but significantly better cell proliferation � as inferred from metabolic activity � after 7 days, although a decrease after 14 days was noted. Quasi-static compression tests showed a decrease in compressive yield strength and apparent elastic modulus with increasing BG fraction, which could be attributed to a lack of adequate mechanical bonding between the BG particles and the PCL matrix. The results show that the inks were successfully generated, and the scaffolds were fabricated with high resolution and fidelity despite their relatively large size (>1000 mm3). However, further work is required to understand the mechano-biological interaction between the BG particle additives and the PCL matrix to improve the mechanical and biological properties of the printed structures.
|