Anabalon, A., Deruelle, N., & Julie, F. L. (2016). Einstein-Katz action,variational principle, Noether charges and the thermodynamics of AdS-black holes. J. High Energy Phys., (8), 15 pp.
Abstract: In this paper we describe 4-dimensional gravity coupled to scalar and Maxwell fields by the Einstein-Katz action, that is, the covariant version of the “Gamma-Gamma – Gamma-Gamma” part of the Hilbert action supplemented by the divergence of a generalized “Katz vector”. We consider static solutions of Einstein's equations, parametrized by some integration constants, which describe an ensemble of asymptotically AdS black holes. Instead of the usual Dirichlet boundary conditions, which aim at singling out a specific solution within the ensemble, we impose that the variation of the action vanishes on shell for the broadest possible class of solutions. We will see that, when a long-range scalar “hair” is present, only sub-families of the solutions can obey that criterion. The Katz-Bicak-Lynden-Bell (“KBL”) superpotential built on this (generalized) vector will then give straightforwardly the Noether charges associated with the spacetime symmetries (that is, in the static case, the mass). Computing the action on shell, we will see next that the solutions which obey the imposed variational principle, and with Noether charges given by the KBL superpotential, satisfy the Gibbs relation, the Katz vectors playing the role of “counterterms”. Finally, we show on the specific example of dyonic black holes that the sub-class selected by our variational principle satisfies the first law of thermodynamics when their mass is de fined by the KBL superpotential.
|
Anabalon, A., Deruelle, N., Tempo, D., & Troncoso, R. (2011). Remarks On The Myers-Perry And Einstein-Gauss-Bonnet Rotating Solutions. Int. J. Mod. Phys. D, 20(5), 639–647.
Abstract: The Kerr-type solutions of the five-dimensional Einstein and Einstein-Gauss-Bonnet equations look pretty similar when written in Kerr-Schild form. However the Myers-Perry spacetime is circular whereas the rotating solution of the Einstein-Gauss-Bonnet theory is not. We explore some consequences of this difference in particular regarding the (non) existence of Boyer-Lindquist-type coordinates and the extension of the manifold.
|
Anabalon, A., & Oliva, J. (2012). Exact hairy black holes and their modification to the universal law of gravitation. Phys. Rev. D, 86(10), 5 pp.
Abstract: In this paper two things are done. First, it is pointed out the existence of exact asymptotically flat, spherically symmetric black holes when a self-interacting, minimally coupled scalar field is the source of the Einstein equations in four dimensions. The scalar field potential is recently found to be compatible with the hairy generalization of the Plebanski-Demianski solution of general relativity. This paper describes the spherically symmetric solutions that smoothly connect the Schwarzschild black hole with its hairy counterpart. The geometry and scalar field are everywhere regular except at the usual Schwarzschild-like singularity inside the black hole. The scalar field energy momentum tensor satisfies the null-energy condition in the static region of spacetime. The first law holds when the parameters of the scalar field potential are fixed under thermodynamical variation. Second, it is shown that an extra, dimensionless parameter, present in the hairy solution, allows to modify the gravitational field of a spherically symmetric black hole in a remarkable way. When the dimensionless parameter is increased, the scalar field generates a flat gravitational potential that, however, asymptotically matches the Schwarzschild gravitational field. Finally, it is shown that a positive cosmological constant can render the scalar field potential convex if the parameters are within a specific rank.
|
Anabalon, A., Ortiz, T., & Samtleben, H. (2013). Rotating D0-branes and consistent truncations of supergravity. Phys. Lett. B, 727(4-5), 516–523.
Abstract: The fluctuations around the D0-brane near-horizon geometry are described by two-dimensional S0(9) gauged maximal supergravity. We work out the U(1)(4) truncation of this theory whose scalar sector consists of five dilaton and four axion fields. We construct the full non-linear Kaluza-Klein ansatz for the embedding of the dilaton sector into type IIA supergravity. This yields a consistent truncation around a geometry which is the warped product of a two-dimensional domain wall and the sphere S-8. As an application, we consider the solutions corresponding to rotating D0-branes which in the near-horizon limit approach AdS(2) x M-8 geometries, and discuss their thermodynamical properties. More generally, we study the appearance of such solutions in the presence of non-vanishing axion fields. (C) 2013 Elsevier B.V. All rights reserved.
|