Anabalon, A., Astefanesei, D., & Choque, D. (2015). On the thermodynamics of hairy black holes. Phys. Lett. B, 743, 154–159.
Abstract: We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the Schwarzschild-AdS black hole. The large black holes have positive specific heat and so they can be in equilibrium with a thermal bath of radiation at the Hawking temperature. The relevant thermodynamic quantities are computed by using the Hamiltonian formalism and counterterm method. We explicitly show that there are first order phase transitions similar to the Hawking-Page phase transition. (C) 2015 The Authors. Published by Elsevier B.V.
|
Anabalon, A., Deruelle, N., Tempo, D., & Troncoso, R. (2011). Remarks On The Myers-Perry And Einstein-Gauss-Bonnet Rotating Solutions. Int. J. Mod. Phys. D, 20(5), 639–647.
Abstract: The Kerr-type solutions of the five-dimensional Einstein and Einstein-Gauss-Bonnet equations look pretty similar when written in Kerr-Schild form. However the Myers-Perry spacetime is circular whereas the rotating solution of the Einstein-Gauss-Bonnet theory is not. We explore some consequences of this difference in particular regarding the (non) existence of Boyer-Lindquist-type coordinates and the extension of the manifold.
|
Anabalon, A., Ortiz, T., & Samtleben, H. (2013). Rotating D0-branes and consistent truncations of supergravity. Phys. Lett. B, 727(4-5), 516–523.
Abstract: The fluctuations around the D0-brane near-horizon geometry are described by two-dimensional S0(9) gauged maximal supergravity. We work out the U(1)(4) truncation of this theory whose scalar sector consists of five dilaton and four axion fields. We construct the full non-linear Kaluza-Klein ansatz for the embedding of the dilaton sector into type IIA supergravity. This yields a consistent truncation around a geometry which is the warped product of a two-dimensional domain wall and the sphere S-8. As an application, we consider the solutions corresponding to rotating D0-branes which in the near-horizon limit approach AdS(2) x M-8 geometries, and discuss their thermodynamical properties. More generally, we study the appearance of such solutions in the presence of non-vanishing axion fields. (C) 2013 Elsevier B.V. All rights reserved.
|
Anabalon, A., Astefanesei, D., Choque, D., & Martinez, C. (2016). Trace anomaly and counterterms in designer gravity. J. High Energy Phys., (3), 29 pp.
Abstract: We construct concrete counterterms of the Balasubramanian-Kraus type for Einstein-scalar theories with designer gravity boundary conditions in AdS(4), so that the total action is fi nite on-shell and satisfy a well de fi ned variational principle. We focus on scalar fi elds with the conformal mass m(2) = -2l(-2) and show that the holographic mass matches the Hamiltonian mass for any boundary conditions. We compute the trace anomaly of the dual fi eld theory in the generic case, as well as when there exist logarithmic branches of non-linear origin. As expected, the anomaly vanishes for the boundary conditions that are AdS invariant. When the anomaly does not vanish, the dual stress tensor describes a thermal gas with an equation of state related to the boundary conditions of the scalar fi eld. In the case of a vanishing anomaly, we recover the dual theory of a massless thermal gas. As an application of the formalism, we consider a general family of exact hairy black hole solutions that, for some particular values of the parameters in the moduli potential, contains solutions of four-dimensional gauged N = 8 supergravity and its omega-deformation. Using the AdS/CFT duality dictionary, they correspond to triple trace deformations of the dual fi eld theory.
|