|
Asenjo, F. A. (2024). Accelerating self-modulated nonlinear waves in weakly and strongly magnetized relativistic plasmas. J. Plasma Phys., 30(1).
Abstract: It is known that a nonlinear Schrodinger equation describes the self-modulation of a large amplitude circularly polarized wave in relativistic electron-positron plasmas in the weakly and strongly magnetized limits. Here, we show that such an equation can be written as a modified second Painleve equation, producing accelerated propagating wave solutions for those nonlinear plasmas. This solution even allows the plasma wave to reverse its direction of propagation. The acceleration parameter depends on the plasma magnetization. This accelerating solution is different to the usual soliton solution propagating at constant speed.
|
|
|
Asenjo, F. A., & Comisso, L. (2015). Generalized Magnetofluid Connections in Relativistic Magnetohydrodynamics. Phys. Rev. Lett., 114(11), 5 pp.
Abstract: The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept.
|
|
|
Asenjo, F. A., & Comisso, L. (2017). Magnetic connections in curved spacetime. Phys. Rev. D, 96(12), 7 pp.
Abstract: The ideal magnetohydrodynamic theorem on the conservation of the magnetic connections between plasma elements is generalized to relativistic plasmas in curved spacetime. The connections between plasma elements, which are established by a covariant connection equation, display a particularly complex structure in curved spacetime. Nevertheless, it is shown that these connections can be interpreted in terms of magnetic field lines alone by adopting a 3 + 1 foliation of spacetime.
|
|
|
Asenjo, F. A., & Comisso, L. (2017). Relativistic Magnetic Reconnection in Kerr Spacetime. Phys. Rev. Lett., 118(5), 5 pp.
Abstract: The magnetic reconnection process is analyzed for relativistic magnetohydrodynamical plasmas around rotating black holes. A simple generalization of the Sweet-Parker model is used as a first approximation to the problem. The reconnection rate, as well as other important properties of the reconnection layer, has been calculated taking into account the effect of spacetime curvature. Azimuthal and radial current sheet configurations in the equatorial plane of the black hole have been studied, and the case of small black hole rotation rate has been analyzed. For the azimuthal configuration, it is found that the black hole rotation decreases the reconnection rate. On the other hand, in the radial configuration, it is the gravitational force created by the black hole mass that decreases the reconnection rate. These results establish a fundamental interaction between gravity and magnetic reconnection in astrophysical contexts.
|
|
|
Asenjo, F. A., & Comisso, L. (2019). Gravitational electromotive force in magnetic reconnection around Schwarzschild black holes. Phys. Rev. D, 99(6), 7 pp.
Abstract: We analytically explore the effects of the gravitational electromotive force on magnetic reconnection around Schwarzschild black holes through a generalized general-relativistic magnetohydrodynamic model that retains two-fluid effects. It is shown that the gravitational electromotive force can couple to collisionless two-fluid effects and drive magnetic reconnection. This is allowed by the departure from quasineutrality in curved spacetime, which is explicitly manifested as the emergence of an effective resistivity in Ohm's law. The departure from quasineutrality is owed to different gravitational pulls experienced by separate parts of the current layer. This produces an enhancement of the reconnecion rate due to purely gravitational effects.
|
|
|
Asenjo, F. A., & Hojman, S. A. (2017). Birefringent light propagation on anisotropic cosmological backgrounds. Phys. Rev. D, 96(4), 12 pp.
Abstract: Exact electromagnetic wave solutions to Maxwell equations on anisotropic Bianchi I cosmological spacetime backgrounds are studied. The waves evolving on Bianchi I spacetimes exhibit birefringence (associated with linear polarization) and dispersion. The particular case of a vacuum-dominated anisotropic Universe, which reproduces a Friedmann-Robertson-Walker Universe (for late times)-while, for earlier times, it matches a Kasner Universe-is studied. The electromagnetic waves do not, in general, follow null geodesics. This produces a modification of the cosmological redshift, which is then dependent on light polarization, its dispersion, and its non-null geodesic behavior. New results presented here may help to tackle some issues related to the “horizon” problem.
|
|
|
Asenjo, F. A., & Hojman, S. A. (2017). Class of Exact Solutions for a Cosmological Model of Unified Gravitational and Quintessence Fields. Found. Phys., 47(7), 887–896.
Abstract: A new approach to tackle Einstein equations for an isotropic and homogeneous Friedmann-Robertson-Walker Universe in the presence of a quintessence scalar field is devised. It provides a way to get a simple exact solution to these equations. This solution determines the quintessence potential uniquely and it differs from solutions which have been used to study inflation previously. It relays on a unification of geometry and dark matter implemented through the definition of a functional relation between the scale factor of the Universe and the quintessence field. For a positive curvature Universe, this solution produces perpetual accelerated expansion rate of the Universe, while the Hubble parameter increases abruptly, attains a maximum value and decreases thereafter. The behavior of this cosmological solution is discussed and its main features are displayed. The formalism is extended to include matter and radiation.
|
|
|
Asenjo, F. A., & Hojman, S. A. (2017). Do electromagnetic waves always propagate along null geodesics? Class. Quantum Gravity, 34(20), 12 pp.
Abstract: We find exact solutions to Maxwell equations written in terms of fourvector potentials in non-rotating, as well as in Gdel and Kerr spacetimes. We show that Maxwell equations can be reduced to two uncoupled secondorder differential equations for combinations of the components of the four-vector potential. Exact electromagnetic waves solutions are written on given gravitational field backgrounds where they evolve. We find that in non-rotating spherical symmetric spacetimes, electromagnetic waves travel along null geodesics. However, electromagnetic waves on Gdel and Kerr spacetimes do not exhibit that behavior.
|
|
|
Asenjo, F. A., & Hojman, S. A. (2017). New non-linear modified massless Klein-Gordon equation. Eur. Phys. J. C, 77(11), 5 pp.
Abstract: The massless Klein-Gordon equation on arbitrary curved backgrounds allows for solutions which develop “tails” inside the light cone and, therefore, do not strictly follow null geodesics as discovered by DeWitt and Brehme almost 60 years ago. A modification of the massless Klein-Gordon equation is presented, which always exhibits null geodesic propagation of waves on arbitrary curved space-times. This new equation is derived from a Lagrangian which exhibits current-current interaction. Its non-linearity is due to a self-coupling term which is related to the quantum mechanical Bohm potential.
|
|
|
Asenjo, F. A., & Hojman, S. A. (2019). Correspondence between dark energy quantum cosmology and Maxwell equations. Eur. Phys. J. C, 79(9), 5 pp.
Abstract: A Friedmann-Robertson-Walker cosmology with dark energy can be modelled using a quintessence field. That system is equivalent to a relativistic particle moving on a two-dimensional conformal spacetime. When the quintessence behaves as a free massless scalar field in a Universe with cosmological constant, the quantized version of that theory can lead to a supersymmetric Majorana quantum cosmology. The purpose of this work is to show that such quantum cosmological model corresponds to the Maxwell equations for electromagnetic waves propagating in a medium with specific values for its relative permittivity and relative permeability. The form of those media parameters are calculated, implying that a Majorana quantum cosmology can be studied in an analogue electromagnetic system.
|
|
|
Asenjo, F. A., & Hojman, S. A. (2020). Casimir force induced by electromagnetic wave polarization in Kerr, Godel and Bianchi-I spacetimes. Eur. Phys. J. C, 80(11), 7 pp.
Abstract: Electromagnetic waves propagation on either rotating or anisotropic spacetime backgrounds (such as Kerr and Gödel metrics, or Bianchi�I metric) produce a reduction of the magnitude of Casimir forces between plates. These
curved spacetimes behave as chiral or birefringent materials producing dispersion of electromagnetic waves, in such a way that right� and left�circularly polarized light waves propagate with different phase velocities. Results are explicitly calculated for discussed cases. The difference on the wavevectors of the two polarized electromagnetic waves produces an abatement of a Casimir force which depends on the interaction between the polarization of electromagnetic
waves and the properties of the spacetime.
|
|
|
Asenjo, F. A., & Hojman, S. A. (2021). Accelerating solutions to diffusion equation. Eur. Phys. J. Plus., 136(6), 677.
Abstract: We report accelerating diffusive solutions to the diffusion equation with a constant diffusion tensor. The maximum values of the diffusion density evolve in an accelerating fashion described by Airy functions. We show the diffusive accelerating behavior for one-dimensional systems, as well as for a general three-dimensional case. We also construct a modulated modified form of the diffusion solution that retains the accelerating features.
|
|
|
Asenjo, F. A., & Hojman, S. A. (2021). Nondiffracting gravitational waves. Eur. Phys. J. C, 81(1), 98.
Abstract: It is proved that accelerating nondiffracting gravitational Airy wave-packets are solutions of linearized gravity. It is also showed that Airy functions are exact solutions to Einstein equations for non-accelerating nondiffracting gravitational wave-packets.
|
|
|
Asenjo, F. A., & Hojman, S. A. (2021). Reply to Comment on 'Do electromagnetic waves always propagate along null geodesics?' Reply. Class. Quantum Gravity, 38(23), 238002.
Abstract: A reply to the previous article commenting on non-geodesical propagation of electromagnetic fields on gravitational backgrounds and the eikonal limit are presented.
|
|
|
Asenjo, F. A., & Hojman, S. A. (2022). Airy heat bullets. Eur. Phys. J. Plus., 137(10), 1201.
Abstract: New localized structured solutions for the three-dimensional linear heat (diffusion) equation are presented. These new solutions are written in terms of Airy functions. They are constructed as wave packet-like structures formed by a superposition of Bessel functions through the introduction of spectral functions. These diffusive solutions accelerate along their propagation direction, while in the plane orthogonal to it, they retain their confined structure. These heat (diffusion) densities retain a complete localized form in space as they propagate, and may be considered the heat analogue of Airy light bullets.
|
|
|
Asenjo, F. A., & Hojman, S. A. (2022). Light-like propagation of self-interacting Klein-Gordon fields in cosmology. Eur. Phys. J. Plus., 137(1), 20.
Abstract: It is showed that complex scalar fields with a self-interaction potential may propagate along null geodesics on isotropic flat Friedmann-Lemaitre-Robertson-Walker universes with different time-dependent scale factors. This effect appears for certain kinds of self-interactions only, for different forms of potentials, and even for the massive case.
|
|
|
Asenjo, F. A., & Hojman, S. A. (2023). Time-domain supersymmetry for massless scalar and electromagnetic fields in anisotropic cosmologies. Phys. Scr., 98(10), 105302.
Abstract: It is shown that any cosmological anisotropic model produces supersymmetric theories for both massless scalar and electromagnetic (abelian) fields. This supersymmetric theory is the time-domain analogue of a supersymmetric quantum mechanics algebra theory. In this case, the variations of the anisotropic scale factors of the Universe are responsible for triggering the supersymmetry. For scalar fields, the superpartner fields evolve in two different cosmological scenarios (Universes). On the other hand, for propagating electromagnetic fields, supersymmetry is manifested through its polarization degrees of freedom in one Universe. In this case, polarization degrees of freedom of electromagnetic waves, which are orthogonal to its propagation direction, become superpartners from each other. This behavior can be measured, for example, through the rotation of the plane of polarization of cosmological light.
|
|
|
Asenjo, F. A., & Mahajan, S. M. (2015). Relativistic quantum vorticity of the quadratic form of the Dirac equation. Phys. Scr., 90(1), 4 pp.
Abstract: We explore the fluid version of the quadratic form of the Dirac equation, sometimes called the Feynman-Gell-Mann equation. The dynamics of the quantum spinor field is represented by equations of motion for the fluid density, the velocity field, and the spin field. In analogy with classical relativistic and non-relativistic quantum theories, the fully relativistic fluid formulation of this equation allows a vortex dynamics. The vortical form is described by a total tensor field that is the weighted combination of the inertial, electromagnetic and quantum forces. The dynamics contrives the quadratic form of the Dirac equation as a total vorticity free system.
|
|
|
Asenjo, F. A., & Mahajan, S. M. (2019). Diamagnetic field states in cosmological plasmas. Phys. Rev. E, 99(5), 7 pp.
Abstract: Using a generally covariant electrovortic (magnetofluid) formalism for relativistic plasmas, the dynamical evolution of a generalized vorticity (a combination of the magnetic and kinematic parts) is studied in a cosmological context. We derive macroscopic vorticity and magnetic field structures that can emerge in spatial equilibrium configurations of the relativistic plasma. These fields, however, evolve in time. These magnetic and velocity fields, self-consistently sustained in a plasma with arbitrary thermodynamics, constitute a diamagnetic state in the expanding universe. In particular, we explore a special class of magnetic and velocity field structures supported by a plasma in which the generalized vorticity vanishes. We derive a highly interesting characteristic of such “superconductor-like” fields in a cosmological plasmas in the radiation era in the early universe. In that case, the fields grow proportional to the scale factor, establishing a deep connection between the expanding universe and the primordial magnetic fields.
|
|
|
Asenjo, F. A., & Mahajan, S. M. (2020). Resonant interaction between dispersive gravitational waves and scalar massive particles. Phys. Rev. D, 101(6), 4 pp.
Abstract: The Klein-Gordon equation is solved in the curved background spacetime created by a dispersive gravitational wave. Unlike solutions of perturbed Einstein equations in vacuum, dispersive gravitational waves do not travel exactly at the speed of light. As a consequence, the gravitational wave can resonantly exchange energy with scalar massive particles. Some details of the resonant interaction are displayed in a calculation demonstrating how relativistic particles (modeled by the Klein-Gordon equation), feeding on such gravitational waves, may be driven to extreme energies.
|
|