Home | << 1 >> |
![]() |
Yushimito, W. F., Ban, X. G., & Holguin-Veras, J. (2014). A Two-Stage Optimization Model for Staggered Work Hours. J. Intell. Transport. Syst., 18(4), 410–425.
Abstract: Traditional or standard work schedules refer to the requirement that workers must be at work the same days and during the same hours each day. This requirement constrains work-related trip arrivals, and generates morning and afternoon peak hours due to the concentration of work days and/or work hours. Alternative work schedules seek to reschedule work activities away from this traditional requirement. The aim is to flatten the peak hours by spreading the demand (i.e., assigning it to the shoulders of the peak hour), lowering the peak demand. This not only would reduce societal costs but also can help to minimize the physical requirements. In this article, a two-stage optimization model is presented to quantify the effects of staggered work hours under incentive policies. In the first stage, a variation of the generalized quadratic assignment problem is used to represent the firm's assignment of workers to different work starting times. This is the input of a nonlinear complementarity problem that captures the behavior of the users of the transportation network who are seeking to overcome the constraints imposed by working schedules (arrival times). Two examples are provided to show how the model can be used to (a) quantify the effects and response of the firm to external incentives and (b) evaluate what type of arrangements in starting times are to be made in order to achieve a social optimum.
|
Yushimito, W. F., Ban, X. G., & Holguin-Veras, J. (2015). Correcting the Market Failure in Work Trips with Work Rescheduling: An Analysis Using Bi-level Models for the Firm-workers Interplay. Netw Spat. Econ., 15(3), 883–915.
Abstract: Compulsory trips (e.g., work trips) contribute with the major part of the congestion in the morning peak. It also prevents the society to reach a social optimum (the solution that maximizes welfare) because the presence of the private utility of one the agents (the firm), acting as a dominant agent, does not account for the additional costs imposed in their workers (congestion) as well as the costs imposed to the rest of the society (i.e., congestion, pollution). In this paper, a study of a strategy to influence the demand generator by relaxing the arrival constraints is presented. Bi-level programming models are used to investigate the equilibrium reached from the firm-workers interplay which helps to explain how the market failure arises. The evaluation includes the use of incentives to induce the shift to less congested periods and the case of the social system optimum in which a planner objective is incorporated as a third agent usually seeking to improve social welfare (improve productivity of the firm while at the same time reduce the total system travel time). The later is used to show that it is possible to provide a more efficient solution which better off society. A numerical example is used to (1) show the nature of the market failure, (2) evaluate the social system optimum, and (3) show how a congestion tax or an optimal incentive can help to correct the market failure. The results also corroborate that these mechanisms are more likely to be more efficient when firms face little production effects on time and workers do not high opportunity costs for starting at off peak periods.
|