
Babonneau, F., Barrera, J., & Toledo, J. (2021). Decarbonizing the Chilean Electric Power System: A Prospective Analysis of Alternative Carbon Emissions Policies. Energies, 14(16), 4768.
Abstract: In this paper, we investigate potential pathways for achieving deep reductions in CO2 emissions by 2050 in the Chilean electric power system. We simulate the evolution of the power system using a longterm planning model for policy analysis that identifies investments and operation strategies to meet demand and CO2 emissions reductions at the lowest possible cost. The model considers a simplified representation of the main transmission network and representative days to simulate operations considering the variability of demand and renewable resources at different geographical locations. We perform a scenario analysis assuming different ambitious renewable energy and emission reduction targets by 2050. As observed in other studies, we show that the incremental cost of reducing CO2 emissions without carbon capture or offset alternatives increases significantly as the system approaches zero emissions. Indeed, the carbon tax is multiplied by a factor of 4 to eliminate the last Mt of CO2 emissions, i.e., from 2000 to almost 8500 USD/tCO(2) in 2050. This result highlights the importance of implementing technologyneutral mechanisms that help investors identify the most costefficient actions to reduce CO2 emissions. Our analysis shows that Carbon Capture and Storage could permit to divide by more than two the total system cost of a 100% renewable scenario. Furthermore, it also illustrates the importance of implementing economywide carbon emissions policies that ensure that the incremental costs to reduce CO2 emissions are roughly similar across different sectors of the economy.



Barrera, J., & Araya, H. (2023). Modeling Chile Fishing Data Using Environmental Exogenous Variables with GARCHX Model. J. Iran. Stat. Soc., 21(1), 19–35.
Abstract: Fishing industry has always been an economic motor in many countries around the world, but the fisheries production faces a lot of uncertainty and instability due to the complex factors involved in its operations. In this article, we consider the problem of modeling Chile fishing data using environmental exogenous variables with generalized autoregressive conditional heteroskedasticity (GARCHX) type models. We carried out this by proposing an ARMA type model for the mean with GARCHX noise. First, the ARMA, GARCH and GARCHX models are briefly introduced and the data is described. The exogenous variables are selected from a group of environmental and climatic indicators by correlational analysis. Then, ARMA GARCH and ARMA GARCHX models with exogenous variables are fitted and compared by information criteria and classical error measures, and stability of its parameters are checked. The statistical tests and comparisons evidenced that a model with inclusion of external variables in mean and variance with the ARMA GARCHX specification performed better and adjusted the observed values more rigorously. Finally, some conclusions and possible refinations of the applied techniques are given.



Barrera, J., & Fontbona, J. (2010). The Limiting MoveToFront SearchCost In Law Of Large Numbers Asymptotic Regimes. Ann. Appl. Probab., 20(2), 722–752.
Abstract: We explicitly compute the limiting transient distribution of the searchcost in the movetofront Markov chain when the number of objects tends to infinity, for general families of deterministic or random request rates. Our techniques are based on a “law of large numbers for random partitions,” a scaling limit that allows us to exactly compute limiting expectation of empirical functionals of the request probabilities of objects. In particular, we show that the limiting searchcost can be split at an explicit deterministic threshold into one random variable in equilibrium, and a second one related to the initial ordering of the list. Our results ensure the stability of the limiting searchcost under general perturbations of the request probabilities. We provide the description of the limiting transient behavior in several examples where only the stationary regime is known, and discuss the range of validity of our scaling limit.



Barrera, J., & Lagos, G. (2020). Limit distributions of the upper order statistics for the Levyfrailty MarshallOlkin distribution. Extremes, 23, 603–628.
Abstract: The MarshallOlkin (MO) distribution is considered a key model in reliability theory and in risk analysis, where it is used to model the lifetimes of dependent components or entities of a system and dependency is induced by “shocks” that hit one or more components at a time. Of particular interest is the Levyfrailty subfamily of the MarshallOlkin (LFMO) distribution, since it has few parameters and because the nontrivial dependency structure is driven by an underlying Levy subordinator process. The main contribution of this work is that we derive the precise asymptotic behavior of the upper order statistics of the LFMO distribution. More specifically, we consider a sequence ofnunivariate random variables jointly distributed as a multivariate LFMO distribution and analyze the order statistics of the sequence asngrows. Our main result states that if the underlying Levy subordinator is in the normal domain of attraction of a stable distribution with index of stability alpha then, after certain logarithmic centering and scaling, the upper order statistics converge in distribution to a stable distribution if alpha> 1 or a simple transformation of it if alpha <= 1. Our result can also give easily computable confidence intervals for the last failure times, provided that a proper convergence analysis is carried out first.



Barrera, J., & Ycart, B. (2014). Bounds for left and right window cutoffs. ALEALatin Am. J. Probab. Math. Stat., 11(2), 445–458.
Abstract: The location and width of the time window in which a sequence of processes converges to equilibrum are given under conditions of exponential convergence. The location depends on the side: the leftwindow and rightwindow cutoffs may have different locations. Bounds on the distance to equilibrium are given for both sides. Examples prove that the bounds are tight.



Barrera, J., Beaupuits, P., Moreno, E., Moreno, R., & Munoz, F. D. (2021). Planning resilient networks against natural hazards: Understanding the importance of correlated failures and the value of flexible transmission assets. Electr. Power Syst. Res., 197, 107280.
Abstract: Natural hazards cause major power outages as a result of spatiallycorrelated failures of network components. However, these correlations between failures of individual elements are often ignored in probabilistic planning models for optimal network design. We use different types of planning models to demonstrate the impact of ignoring correlations between component failures and the value of flexible transmission assets when power systems are exposed to natural hazards. We consider a network that is hypothetically located in northern Chile, a region that is prone to earthquakes. Using a simulation model, we compute the probabilities of spatially correlated outages of transmission and substations based on information about historical earthquakes in the area. We determine optimal network designs using a deterministic reliability criterion and probabilistic models that either consider or disregard correlations among component failures. Our results show that the probability of a simultaneous failure of two transmission elements exposed to an earthquake can be up to 15 times higher than the probability simultaneous failure of the same two elements when we only consider independent component failures. Disregarding correlations of component failures changes the optimal network design significantly and increases the expected levels of curtailed demand in scenarios with spatiallycorrelated failures. We also find that, in some cases, it becomes optimal to invest in HVDC instead of AC transmission lines because the former gives the system operator the flexibility to control power flows in meshed transmission networks. This feature is particularly valuable to systems exposed to natural hazards, where network topologies in postcontingency operating conditions might differ significantly from precontingency ones.



Barrera, J., Bertoncini, O., & Fernandez, R. (2009). Abrupt Convergence and Escape Behavior for Birth and Death Chains. J. Stat. Phys., 137(4), 595–623.
Abstract: We link two phenomena concerning the asymptotical behavior of stochastic processes: (i) abrupt convergence or cutoff phenomenon, and (ii) the escape behavior usually associated to exit from metastability. The former is characterized by convergence at asymptotically deterministic times, while the convergence times for the latter are exponentially distributed. We compare and study both phenomena for discretetime birthanddeath chains on a"currency sign with drift towards zero. In particular, this includes energydriven evolutions with energy functions in the form of a single well. Under suitable drift hypotheses, we show that there is both an abrupt convergence towards zero and escape behavior in the other direction. Furthermore, as the evolutions are reversible, the law of the final escape trajectory coincides with the time reverse of the law of cutoff paths. Thus, for evolutions defined by onedimensional energy wells with sufficiently steep walls, cutoff and escape behavior are related by time inversion.



Barrera, J., Cancela, H., & Moreno, E. (2015). Topological optimization of reliable networks under dependent failures. Oper. Res. Lett., 43(2), 132–136.
Abstract: We address the design problem of a reliable network. Previous work assumes that link failures are independent. We discuss the impact of dropping this assumption. We show that under a commoncause failure model, dependencies between failures can affect the optimal design. We also provide an integerprogramming formulation to solve this problem. Furthermore, we discuss how the dependence between the links that participate in the solution and those that do not can be handled. Other dependency models are discussed as well. (C) 2014 Elsevier B.V. All rights reserved.



Barrera, J., Carrasco, R. A., Mondschein, S., Canessa, G., & RojasZalazar, D. (2020). Operating room scheduling under waiting time constraints: the Chilean GES plan. Ann. Oper. Res., 286(12), 501–527.
Abstract: In 2000, Chile introduced profound health reforms to achieve a more equitable and fairer system (GES plan). The reforms established a maximum waiting time between diagnosis and treatment for a set of diseases, described as an opportunity guarantee within the reform. If the maximum waiting time is exceeded, the patient is referred to another (private) facility and receives a voucher to cover the additional expenses. This voucher is paid by the health provider that had to do the procedure, which generally is a public hospital. In general, this reform has improved the service for patients with GES pathologies at the expense of patients with nonGES pathologies. These new conditions create a complicated planning scenario for hospitals, in which the hospital's OR Manager must balance the fulfillment of these opportunity guarantees and the timely service of patients not covered by the guarantee. With the collaboration of the Instituto de Neurocirugia, in Santiago, Chile, we developed a mathematical model based on stochastic dynamic programming to schedule surgeries in order to minimize the cost of referrals to the private sector. Given the large size of the state space, we developed an heuristic to compute good solutions in reasonable time and analyzed its performance. Our experimental results, with both simulated and real data, show that our algorithm performs close to optimum and improves upon the current practice. When we compared the results of our heuristic against those obtained by the hospital's OR manager in a simulation setting with real data, we reduced the overtime from occurring 21% of the time to zero, and the nonGES average waiting list's length from 71 to 58 patients, without worsening the average throughput.



Barrera, J., Carrasco, R. A., & Moreno, E. (2020). Realtime fleet management decision support system with security constraints. TOP, 28(3), 728–748.
Abstract: Intelligent transportation, and in particular, fleet management, has been a forefront concern for a plethora of industries. This statement is especially true for the production of commodities, where transportation represents a central element for operational continuity. Additionally, in many industries, and in particular those with hazardous environments, fleet control must satisfy a wide range of security restrictions to ensure that risks are kept at bay and accidents are minimum. Furthermore, in these environments, any decision support tool must cope with noisy and incomplete data and give recommendations every few minutes. In this work, a fast and efficient decision support tool is presented to help fleet managers oversee and control ore trucks, in a mining setting. The main objective of this system is to help managers avoid interactions between ore trucks and personnel buses, one of the most critical security constraints in our case study, keeping a minimum security distance between the two at all times. Furthermore, additional algorithms are developed and implemented, so that this approach can work with reallife noisy GPS data. Through the use of historical data, the performance of this decision support system is studied, validating that it works under the reallife conditions presented by the company. The experimental results show that the proposed approach improved truck and road utilization significantly while allowing the fleet manager to control the security distance required by their procedures.



Barrera, J., HomemDeMello, T., Moreno, E., Pagnoncelli, B. K., & Canessa, G. (2016). Chanceconstrained problems and rare events: an importance sampling approach. Math. Program., 157(1), 153–189.
Abstract: We study chanceconstrained problems in which the constraints involve the probability of a rare event. We discuss the relevance of such problems and show that the existing samplingbased algorithms cannot be applied directly in this case, since they require an impractical number of samples to yield reasonable solutions. We argue that importance sampling (IS) techniques, combined with a Sample Average Approximation (SAA) approach, can be effectively used in such situations, provided that variance can be reduced uniformly with respect to the decision variables. We give sufficient conditions to obtain such uniform variance reduction, and prove asymptotic convergence of the combined SAAIS approach. As it often happens with IS techniques, the practical performance of the proposed approach relies on exploiting the structure of the problem under study; in our case, we work with a telecommunications problem with Bernoulli input distributions, and show how variance can be reduced uniformly over a suitable approximation of the feasibility set by choosing proper parameters for the IS distributions. Although some of the results are specific to this problem, we are able to draw general insights that can be useful for other classes of problems. We present numerical results to illustrate our findings.



Barrera, J., Moreno, E., & Munoz, G. (2022). Convex envelopes for rayconcave functions. Optim. Let., 16, 2221–2240.
Abstract: Convexification based on convex envelopes is ubiquitous in the nonlinear optimization literature. Thanks to considerable efforts of the optimization community for decades, we are able to compute the convex envelopes of a considerable number of functions that appear in practice, and thus obtain tight and tractable approximations to challenging problems. We contribute to this line of work by considering a family of functions that, to the best of our knowledge, has not been considered before in the literature. We call this family rayconcave functions. We show sufficient conditions that allow us to easily compute closedform expressions for the convex envelope of rayconcave functions over arbitrary polytopes. With these tools, we are able to provide new perspectives to previously known convex envelopes and derive a previously unknown convex envelope for a function that arises in probability contexts.



Barrera, J., Moreno, E., Munoz, G., & Romero, P. (2022). Exact reliability optimization for seriesparallel graphs using convex envelopes. Networks, 80(2), 235–248.
Abstract: Given its wide spectrum of applications, the classical problem of allterminal network reliability evaluation remains a highly relevant problem in network design. The associated optimization problemto find a network with the best possible reliability under multiple constraintspresents an even more complex challenge, which has been addressed in the scientific literature but usually under strong assumptions over failures probabilities and/or the network topology. In this work, we propose a novel reliability optimization framework for network design with failures probabilities that are independent but not necessarily identical. We leverage the lineartime evaluation procedure for network reliability in the seriesparallel graphs of Satyanarayana and Wood (1985) to formulate the reliability optimization problem as a mixedinteger nonlinear optimization problem. To solve this nonconvex problem, we use classical convex envelopes of bilinear functions, introduce custom cutting planes, and propose a new family of convex envelopes for expressions that appear in the evaluation of network reliability. Furthermore, we exploit the refinements produced by spatial branchandbound to locally strengthen our convex relaxations. Our experiments show that, using our framework, one can efficiently obtain optimal solutions in challenging instances of this problem.



Barrera, J., Moreno, E., & Varas, S. (2020). A decomposition algorithm for computing income taxes with passthrough entities and its application to the Chilean case. Ann. Oper. Res., 286(12), 545–557.
Abstract: Income tax systems with “passthrough” entities transfer a firm's income to shareholders, which are taxed individually. In 2014, a Chilean tax reform introduced this type of entity and changed to an accrual basis that distributes incomes (but not losses) to shareholders. A crucial step for the Chilean taxation authority is to compute the final income of each individual given the complex network of corporations and companies, usually including cycles between them. In this paper, we show the mathematical conceptualization and the solution to the problem, proving that there is only one way to distribute income to taxpayers. Using the theory of absorbing Markov chains, we define a mathematical model for computing the taxable income of each taxpayer, and we propose a decomposition algorithm for this problem. This approach allows us to compute the solution accurately and to efficiently use computational resources. Finally, we present some characteristics of Chilean taxpayers' network and the computational results of the algorithm using this network.



Jimenez, D., Barrera, J., & Cancela, H. (2023). Communication Network Reliability Under Geographically Correlated Failures Using Probabilistic Seismic Hazard Analysis. IEEE Access, 11, 31341–31354.
Abstract: The research community's attention has been attracted to the reliability of networks exposed to largescale disasters and this has become a critical concern in network studies during the last decade. Earthquakes are high on the list of those showing the most significant impacts on communication networks, and simultaneously, they are the least predictable events. This study uses the Probabilistic Seismic Hazard Analysis method to estimate the network element state after an earthquake. The approach considers a seismic source model and ground prediction equations to assess the intensity measure for each element according to its location. In the simulation, nodes fail according to the building's fragility curves. Similarly, links fail according to a failure rate depending on the intensity measure and the cable's characteristics. We use the sourceterminal, and the diameter constrained reliability metrics. The approach goes beyond the graph representation of the network and incorporates the terrain characteristics and the component's robustness into the network performance analysis at an affordable computational cost. We study the method on a network in a seismic region with almost 9000 km of optical fiber. We observed that for sourceterminal that are less than 500 km apart the improvements are marginals while for those that are more than 1000 km apart, reliability improves near a 30% in the enhanced designs. We also showed that these results depend heavily on the robustness/fragility of the infrastructure, showing that performance measures based only the network topology are not enough to evaluate new designs.



Matus, O., Barrera, J., Moreno, E., & Rubino, G. (2019). On the MarshallOlkin Copula Model for Network Reliability Under Dependent Failures. IEEE Trans. Reliab., 68(2), 451–461.
Abstract: The MarshallOlkin (MO) copulamodel has emerged as the standard tool for capturing dependence between components in failure analysis in reliability. In this model, shocks arise at exponential random times, that affect one or several components inducing a natural correlation in the failure process. However, because the number of parameter of the model grows exponentially with the number of components, MO suffers of the “curse of dimensionality.” MO models are usually intended to be applied to design a network before its construction; therefore, it is natural to assume that only partial information about failure behavior can be gathered, mostly from similar existing networks. To construct such an MO model, we propose an optimization approach to define the shock's parameters in the MO copula, in order to match marginal failures probabilities and correlations between these failures. To deal with the exponential number of parameters of this problem, we use a columngeneration technique. We also discuss additional criteria that can be incorporated to obtain a suitable model. Our computational experiments show that the resulting MO model produces a close estimation of the network reliability, especially when the correlation between component failures is significant.



Ruz, G. A., Timmermann, T., Barrera, J., & Goles, E. (2014). Neutral space analysis for a Boolean network model of the fission yeast cell cycle network. Biol. Res., 47, 12 pp.
Abstract: Background: Interactions between genes and their products give rise to complex circuits known as gene regulatory networks (GRN) that enable cells to process information and respond to external stimuli. Several important processes for life, depend of an accurate and contextspecific regulation of gene expression, such as the cell cycle, which can be analyzed through its GRN, where deregulation can lead to cancer in animals or a directed regulation could be applied for biotechnological processes using yeast. An approach to study the robustness of GRN is through the neutral space. In this paper, we explore the neutral space of a Schizosaccharomyces pombe (fission yeast) cell cycle network through an evolution strategy to generate a neutral graph, composed of Boolean regulatory networks that share the same state sequences of the fission yeast cell cycle. Results: Through simulations it was found that in the generated neutral graph, the functional networks that are not in the wildtype connected component have in general a Hamming distance more than 3 with the wildtype, and more than 10 between the other disconnected functional networks. Significant differences were found between the functional networks in the connected component of the wildtype network and the rest of the network, not only at a topological level, but also at the state space level, where significant differences in the distribution of the basin of attraction for the G(1) fixed point was found for deterministic updating schemes. Conclusions: In general, functional networks in the wildtype network connected component, can mutate up to no more than 3 times, then they reach a point of no return where the networks leave the connected component of the wildtype. The proposed method to construct a neutral graph is general and can be used to explore the neutral space of other biologically interesting networks, and also formulate new biological hypotheses studying the functional networks in the wildtype network connected component.

