|
Balocchi, F., Galleguillos, M., Rivera, D., Stehr, A., Arumi, J. L., Pizarro, R., et al. (2023). Forest hydrology in Chile: Past, present, and future. J. Hydrol., 616, 128681.
Abstract: This paper reviews the current knowledge of hydrological processes in Chilean temperate forests which extend along western South America from latitude 29 degrees S to 56 degrees S. This geographic region includes a diverse range of natural and planted forests and a broad sweep of vegetation, edaphic, topographic, geologic, and climatic set-tings which create a unique natural laboratory. Many local communities, endangered freshwater ecosystems, and downstream economic activities in Chile rely on water flows from forested catchments. This review aims to (i) provide a comprehensive overview of Chilean forest hydrology, to (ii) review prior research in forest hydrology in Chile, and to (iii) identify knowledge gaps and provide a vision for future research on forest hydrology in Chile. We reviewed the relation between native forests, commercial plantations, and other land uses on water yield and water quality from the plot to the catchment scale. Much of the global understanding of forests and their relationship with the water cycle is in line with the findings of the studies reviewed here. Streamflow from forested catchments increases after timber harvesting, native forests appear to use less water than plantations, and streams draining native forest yield less sediment than streams draining plantations or grassland/shrublands. We identified 20 key knowledge gaps such as forest groundwater systems, soil-plant-atmosphere interactions, native forest hydrology, and the effect of forest management and restoration on hydrology. Also, we found a paucity of research in the northern geographic areas and forest types (35-36 degrees S); most forest hydrology studies in Chile (56%) have been conducted in the southern area (Los Rios Region around 39-40 degrees S). There is limited knowledge of the geology and soils in many forested areas and how surface and groundwater are affected by changes in land cover. There is an opportunity to advance our understanding using process-based investigations linking field studies and modeling. Through the establishment of a forest hydrology science “society” to coor-dinate efforts, regional and national-scale land use planning might be supported. Our review ends with a vision to advance a cross-scale collaborative effort to use new nation-wide catchment-scale networks Long-term Ecosystem Research (LTER) sites, to promote common and
|
|
|
Barria, P., Ocampo-Melgar, A., Chadwick, C., Galleguillos, M., Garreaud, R., Diaz-Vasconcellos, R., et al. (2022). Comment on: “The impact of a lack of government strategies for sustainable water management and land use planning on the hydrology of water bodies: lessons learned from the disappearance of the Aculeo Lagoon in central Chile” by Valdes-Pineda et al. 2022 in Sustainability, 14(1), 413. Reg. Environ. Change, 22(4), 131.
Abstract: Valdes-Pineda et al. (Sustainability 14:413, 2022) present data for changes in climate, socio-economic, and land use and land cover (LULC) from diverse sources, concluding that the main causes for the desiccation of the Aculeo Lake were the river deviations and aquifer pumping, along with the impact of reduced precipitation. Based on that, they infer that the previous study of Barria et al. (Reg Environ Change 21:1-5, 2021a), which concluded that the impact of the decade-long drought was ten times larger than the increase of human extractions on the lake desiccation lacks scientific validity. We disagree with the conclusions from Valdes-Pineda et al. (Sustainability 14:413, 2022) and document that their article uses fragmentary information of a complex system, misinterprets of our results, and fails to present a reliable attribution methodology. We show that the hypothesis that the disappearance of Aculeo Lake was largely due to local anthropogenic uses is unsupported.
|
|
|
Ocampo-Melgar, A., Barria, P., Chadwick, C., & Diaz-Vasconcellos, R. (2022). Rural transformation and differential vulnerability: Exploring adaptation strategies to water scarcity in the Aculeo Lake basin. Front. Environ. Sci., 10, 955023.
Abstract: The way of life of agricultural rural territories and their long-term capacity to adapt to changes will be challenged not only by the impacts of climate change; but by increased vulnerability stemming from previous inadequate climate adaptations and development policies. Studies that deepen understanding of the differential causes and implications of vulnerabilities will improve adaptation or transformation of institutions for climate change. The Aculeo basin of Central Chile suffered an extreme 10-years rainfall deficit that resulted in the disappearance of a 12 km(2) lake and the economic transformation of the territory. This paper presents a cross-scale exploration of the political, cultural and historical interconnections behind this dramatic story, while critically discussing whether today's land use configuration reflects the territory's adaptive capacity. The story is reconstructed using land-use change analysis along with literature review and Causal-Loop Analysis. Results show how previous policies and other human factors contributed to the agroecosystem transformation, creating different vulnerabilities in different economic sectors. Today, what is observed as disparate capacities to adapt to climatic drought is actually the result of historic exacerbations of the vulnerabilities that had significantly contributed to the water scarcity crisis.
|
|
|
Ocampo-Melgar, A., Barria, P., Chadwick, C., & Riyas, C. (2022). Cooperation under conflict: participatory hydrological modeling for science policy dialogues for the Aculeo Lake. Hydrol. Earth Syst. Sci., 26(19), 5103–5118.
Abstract: Hydrological modeling tools can support collaborative decision processes by visually displaying hydrological systems connections, uncertainties, as well as conflicting preferences over water management strategies. Nevertheless, many challenges remain in the real application of these technical tools to successfully implement, capture, and communicate with non-experts the complexities of coupled human hydrological systems. A 5-step process shows how a WEAP-based hydrological study aiming to explore the disappearance of a 12 km(2) lake in the Aculeo basin in Chile was transformed into a multiple question-driven sociohydrological modeling process to help answer the diversity of questions instigating conflict. Collaboration allowed construction of a surface-groundwater hydrological model that responded to local stakeholders' uncertainties. While testing a subset of socially accepted management strategies under two climate change scenarios, combining the strategies allows recovering up to half the lake water volume. However, the 5-step participatory modeling process also shows how the increasing social-environmental conflicts over the causes and effects of the water scarcity are challenging barriers to overcome with modeling tools. As presented in this article, although flexible approaches and research agendas could better support the exploration of synergies towards collaboration and production of useful and socially acceptable hydrological models, there are still value-driven aspects of water management that need to be explored to better support science policy dialogues.
|
|