|
Carleo, I., Gandolfi, D., Barragan, O., Livingston, J. H., Persson, C. M., Lam, K. W. F., et al. (2020). The Multiplanet System TOI-421*. Astron. J., 160(3), 23 pp.
Abstract: We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations-comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echelle Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution echelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements-and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P-b = 5.19672 +/- 0.00049 days, a mass of M-b = 7.17 +/- 0.66 M-circle plus, and a radius of R-b = R-circle plus, whereas the outer warm Neptune, TOI-421 c, has a period of P-c = 16.06819 +/- 0.00035 days, a mass of M-c = 16.42(-1.04)(+1.06)M(circle plus), a radius of R-c = 5.09(-0.15)(+0.16)R(circle plus), and a density of rho(c) = 0.685(-0.072)(+0.080) cm(-3). With its characteristics, the outer planet (rho(c) = 0.685(-0.0072)(+0.080) cm(-3)) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Ly alpha transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed.
|
|
|
Jenkins, J. S., Diaz, M. R., Kurtovic, N. T., Espinoza, N., Vines, J. I., Rojas, P. A. P., et al. (2020). An ultrahot Neptune in the Neptune desert. Nat. Astron., 4(12), 1148–1157.
Abstract: About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet(1,2). All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R-circle plus), or apparently rocky planets smaller than 2 R-circle plus. Such lack of planets of intermediate size (the `hot Neptune desert') has been interpreted as the inability of low-mass planets to retain any hydrogen/ helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R-circle plus and a mass of 29 M-circle plus, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite(3) revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet's mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0(-2.9)(+2.7) % of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this `ultrahot Neptune' managed to retain such an envelope. Follow-up observations of the planet's atmosphere to better understand its origin and physical nature will be facilitated by the star's brightness (V-mag = 9.8).
|
|
|
Leleu, A., Alibert, Y., Hara, N. C., Hooton, M. J., Wilson, T. G., Robutel, P., et al. (2021). Six transiting planets and a chain of Laplace resonances in TOI-178. Astron. Astrophys., 649, A26.
Abstract: Determining the architecture of multi-planetary systems is one of the cornerstones of understanding planet formation and evolution. Resonant systems are especially important as the fragility of their orbital configuration ensures that no significant scattering or collisional event has taken place since the earliest formation phase when the parent protoplanetary disc was still present. In this context, TOI-178 has been the subject of particular attention since the first TESS observations hinted at the possible presence of a near 2:3:3 resonant chain. Here we report the results of observations from CHEOPS, ESPRESSO, NGTS, and SPECULOOS with the aim of deciphering the peculiar orbital architecture of the system. We show that TOI-178 harbours at least six planets in the super-Earth to mini-Neptune regimes, with radii ranging from
1.152(-0.070)(+0.073)</textual-form>
1.152-0.070+0.073 to
2.87(-0.13)(+0.14)</textual-form> 2.87-0.13+0.14 Earth radii and periods of 1.91, 3.24, 6.56, 9.96, 15.23, and 20.71 days. All planets but the innermost one form a 2:4:6:9:12 chain of Laplace resonances, and the planetary densities show important variations from planet to planet, jumping from
1.02(-0.23)(+0.28)</textual-form> 1.02-0.23+0.28 to
0.177(-0.061)(+0.055)</textual-form> 0.177-0.061+0.055 times the Earth's density between planets c and d. Using Bayesian interior structure retrieval models, we show that the amount of gas in the planets does not vary in a monotonous way, contrary to what one would expect from simple formation and evolution models and unlike other known systems in a chain of Laplace resonances. The brightness of TOI-178 (H = 8.76 mag, J = 9.37 mag, V = 11.95 mag) allows for a precise characterisation of its orbital architecture as well as of the physical nature of the six presently known transiting planets it harbours. The peculiar orbital configuration and the diversity in average density among the planets in the system will enable the study of interior planetary structures and atmospheric evolution, providing important clues on the formation of super-Earths and mini-Neptunes.
|
|
|
Nowak, G., Palle, E., Gandolfi, D., Deeg, H. J., Hirano, T., Barragan, O., et al. (2020). K2-280 b – a low density warm sub-Saturn around a mildly evolved star. Mon. Not. Roy. Astron. Soc., 497(4), 4423–4435.
Abstract: We present an independent discovery and detailed characterization of K2-280 b, a transiting low density warm sub-Saturn in a 19.9-d moderately eccentric orbit (e = 0.35(-0.04)(+0.05)) from K2 campaign 7. A joint analysis of high precision HARPS, HARPS-N, and FIES radial velocity measurements and K2 photometric data indicates that K2-280 b has a radius of R-b = 7.50 +/- 0.44 R-circle plus and a mass of M-b = 37.1 +/- 5.6 M-circle plus, yielding a mean density of rho(b) = 0.48(-0.10)(+0.13) g cm(-3). The host star is a mildly evolved G7 star with an effective temperature of T-eff = 5500 +/- 100 K, a surface gravity of log g(star) = 4.21 +/- 0.05 (cgs), and an iron abundance of [Fe/H] = 0.33 +/- 0.08 dex, and with an inferred mass of M-star = 1.03 +/- 0.03 M-circle dot and a radius of R-star = 1.28 +/- 0.07 R-circle dot. We discuss the importance of K2-280 b for testing formation scenarios of sub-Saturn planets and the current sample of this intriguing group of planets that are absent in the Solar system.
|
|
|
Smith, A. M. S., Acton, J. S., Anderson, D. R., Armstrong, D. J., Bayliss, D., Belardi, C., et al. (2021). NGTS-14Ab: a Neptune-sized transiting planet in the desert. Astron. Astrophys., 646, A183.
Abstract: Context. The sub-Jovian, or Neptunian, desert is a previously identified region of parameter space where there is a relative dearth of intermediate-mass planets with short orbital periods.Aims. We present the discovery of a new transiting planetary system within the Neptunian desert, NGTS-14.Methods. Transits of NGTS-14Ab were discovered in photometry from the Next Generation Transit Survey (NGTS). Follow-up transit photometry was conducted from several ground-based facilities, as well as extracted from TESS full-frame images. We combine radial velocities from the HARPS spectrograph with the photometry in a global analysis to determine the system parameters.Results. NGTS-14Ab has a radius that is about 30 per cent larger than that of Neptune (0.444 +/- 0.030 R-Jup) and is around 70 per cent more massive than Neptune (0.092 +/- 0.012 M-Jup). It transits the main-sequence K1 star, NGTS-14A, with a period of 3.54 days, just far away enough to have maintained at least some of its primordial atmosphere. We have also identified a possible long-period stellar mass companion to the system, NGTS-14B, and we investigate the binarity of exoplanet host stars inside and outside the Neptunian desert using Gaia.
|
|
|
Taboada, E., Fisher, P., Jara, R., Zuniga, E., Gidekel, M., Cabrera, J. C., et al. (2010). Isolation and characterisation of pectic substances from murta (Ugni molinae Turcz) fruits. Food Chem., 123(3), 669–678.
Abstract: Cell walls polysaccharides from murta fruit (Ugni molinae Turcz), an endemic Chilean species with relevant food uses, were fractionated by water, ammonium oxalate, hot diluted HCl and cold diluted NaOH extractions. The polysaccharide fractions were analysed for monosaccharide composition and physicochemical properties. Pectic substances were found in all extracts, but mainly in the oxalate and acid soluble fractions, in which they appear as homogalacturonan polymers. Murta pectin was further extracted by hot diluted acid treatment using industrial conditions, yielding 30% by weight of dry fruit. The polymer showed similar composition and physicochemical properties to those of commercial citrus pectin, presenting a galacturonic acid content of 70.9% (w/w), a molecular weight of 597 kDa, and a methoxylation degree of 57%. The FT-IR spectrum of murta pectin suggests the presence of ferulic acid residues on its structure and the NMR analysis confirmed the structure of this polysaccharide. It is concluded that murta fruit can be considered as a valuable source of high quality pectin. (C) 2010 Elsevier Ltd. All rights reserved.
|
|