|
Grieves, N., Nielsen, L. D., Vines, J. I., Bryant, E. M., Gill, S., Bouchy, F., et al. (2021). NGTS-13b: a hot 4.8 Jupiter-mass planet transiting a subgiant star. Astron. Astrophys., 647, A180.
Abstract: We report the discovery of the massive hot Jupiter NGTS-13b by the Next Generation Transit Survey (NGTS). The V = 12.7 host star is likely in the subgiant evolutionary phase with logg(*) = 4.04 +/- 0.05, T-eff = 5819 +/- 73 K, M-* = 1.30(-0.18)(+0.11) M-circle dot, and R-* = 1.79 +/- 0.06 R-circle dot. The NGTS detected a transiting planet with a period of P = 4.12 days around the star, which was later validated with the Transiting Exoplanet Survey Satellite (TESS; TIC 454069765). We confirm the planet using radial velocities from the CORALIE spectrograph. Using NGTS and TESS full-frame image photometry combined with CORALIE radial velocities, we determine NGTS-13b to have a radius of R-P = 1.142 +/- 0.046 R-Jup, a mass of M-P = 4.84 +/- 0.44 M-Jup, and an eccentricity of e = 0.086 +/- 0.034. Previous studies have suggested that similar to 4 M-Jup may be the border separating two formation scenarios (e.g., core accretion and disk instability) and that massive giant planets share similar formation mechanisms as lower-mass brown dwarfs. NGTS-13b is just above 4 M-Jup, making it an important addition to the statistical sample needed to understand the differences between various classes of substellar companions. The high metallicity of NGTS-13, [Fe/H] = 0.25 +/- 0.17, does not support previous suggestions that massive giants are found preferentially around lower metallicity host stars, but NGTS-13b does support findings that more massive and evolved hosts may have a higher occurrence of close-in massive planets than lower-mass unevolved stars.
|
|
|
Jenkins, J. S., Diaz, M. R., Kurtovic, N. T., Espinoza, N., Vines, J. I., Rojas, P. A. P., et al. (2020). An ultrahot Neptune in the Neptune desert. Nat. Astron., 4(12), 1148–1157.
Abstract: About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet(1,2). All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R-circle plus), or apparently rocky planets smaller than 2 R-circle plus. Such lack of planets of intermediate size (the `hot Neptune desert') has been interpreted as the inability of low-mass planets to retain any hydrogen/ helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R-circle plus and a mass of 29 M-circle plus, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite(3) revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet's mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0(-2.9)(+2.7) % of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this `ultrahot Neptune' managed to retain such an envelope. Follow-up observations of the planet's atmosphere to better understand its origin and physical nature will be facilitated by the star's brightness (V-mag = 9.8).
|
|
|
Lendl, M., Bouchy, F., Gill, S., Nielsen, L. D., Turner, O., Stassun, K., et al. (2020). TOI-222: a single-transit TESS candidate revealed to be a 34-d eclipsing binary with CORALIE, EulerCam, and NGTS. Mon. Not. Roy. Astron. Soc., 492(2), 1761–1769.
Abstract: We report the period, eccentricity, and mass determination for the Transiting Exoplanet Survey Satellite (TESS) single-transit event candidate TOI-222, which displayed a single 3000 ppm transit in the TESS 2-min cadence data from Sector 2. We determine the orbital period via radial velocity measurements (P = 33.9 d), which allowed for ground-based photometric detection of two subsequent transits. Our data show that the companion to TOI-222 is a low-mass star, with a radius of 0.18(-0.10)(+0.39) R-circle dot and a mass of 0.23 +/- 0.01 M-circle dot. This discovery showcases the ability to efficiently discover long-period systems from TESS single-transit events using a combination of radial velocity monitoring coupled with high-precision ground-based photometry.
|
|
|
Nowak, G., Palle, E., Gandolfi, D., Deeg, H. J., Hirano, T., Barragan, O., et al. (2020). K2-280 b – a low density warm sub-Saturn around a mildly evolved star. Mon. Not. Roy. Astron. Soc., 497(4), 4423–4435.
Abstract: We present an independent discovery and detailed characterization of K2-280 b, a transiting low density warm sub-Saturn in a 19.9-d moderately eccentric orbit (e = 0.35(-0.04)(+0.05)) from K2 campaign 7. A joint analysis of high precision HARPS, HARPS-N, and FIES radial velocity measurements and K2 photometric data indicates that K2-280 b has a radius of R-b = 7.50 +/- 0.44 R-circle plus and a mass of M-b = 37.1 +/- 5.6 M-circle plus, yielding a mean density of rho(b) = 0.48(-0.10)(+0.13) g cm(-3). The host star is a mildly evolved G7 star with an effective temperature of T-eff = 5500 +/- 100 K, a surface gravity of log g(star) = 4.21 +/- 0.05 (cgs), and an iron abundance of [Fe/H] = 0.33 +/- 0.08 dex, and with an inferred mass of M-star = 1.03 +/- 0.03 M-circle dot and a radius of R-star = 1.28 +/- 0.07 R-circle dot. We discuss the importance of K2-280 b for testing formation scenarios of sub-Saturn planets and the current sample of this intriguing group of planets that are absent in the Solar system.
|
|
|
Smith, A. M. S., Acton, J. S., Anderson, D. R., Armstrong, D. J., Bayliss, D., Belardi, C., et al. (2021). NGTS-14Ab: a Neptune-sized transiting planet in the desert. Astron. Astrophys., 646, A183.
Abstract: Context. The sub-Jovian, or Neptunian, desert is a previously identified region of parameter space where there is a relative dearth of intermediate-mass planets with short orbital periods.Aims. We present the discovery of a new transiting planetary system within the Neptunian desert, NGTS-14.Methods. Transits of NGTS-14Ab were discovered in photometry from the Next Generation Transit Survey (NGTS). Follow-up transit photometry was conducted from several ground-based facilities, as well as extracted from TESS full-frame images. We combine radial velocities from the HARPS spectrograph with the photometry in a global analysis to determine the system parameters.Results. NGTS-14Ab has a radius that is about 30 per cent larger than that of Neptune (0.444 +/- 0.030 R-Jup) and is around 70 per cent more massive than Neptune (0.092 +/- 0.012 M-Jup). It transits the main-sequence K1 star, NGTS-14A, with a period of 3.54 days, just far away enough to have maintained at least some of its primordial atmosphere. We have also identified a possible long-period stellar mass companion to the system, NGTS-14B, and we investigate the binarity of exoplanet host stars inside and outside the Neptunian desert using Gaia.
|
|