Home | << 1 >> |
![]() |
Almenara, J. M., Bonfils, X., Bryant, E. M., Jordan, A., Hebrard, G., Martioli, E., et al. (2024). TOI-4860 b, a short-period giant planet transiting an M3.5 dwarf. Astron. Astrophys., 683, A166.
Abstract: We report the discovery and characterisation of a giant transiting planet orbiting a nearby M3.5V dwarf (d = 80.4pc, G = 15.1 mag, K=11.2mag, R-* = 0.358 +/- 0.015 R-circle dot, M-* = 0.340 +/- 0.009 M-circle dot). Using the photometric time series from TESS sectors 10, 36, 46, and 63 and near-infrared spectrophotometry from ExTrA, we measured a planetary radius of 0.77 +/- 0.03 R-J and an orbital period of 1.52 days. With high-resolution spectroscopy taken by the CFHT/SPIRou and ESO/ESPRESSO spectrographs, we refined the host star parameters ([Fe/H] = 0.27 +/- 0.12) and measured the mass of the planet (0.273 +/- 0.006 M-J). Based on these measurements, TOI-4860 b joins the small set of massive planets (>80 M-E) found around mid to late M dwarfs (<0.4 R-circle dot), providing both an interesting challenge to planet formation theory and a favourable target for further atmospheric studies with transmission spectroscopy. We identified an additional signal in the radial velocity data that we attribute to an eccentric planet candidate (e = 0.66 +/- 0.09) with an orbital period of 427 +/- 7 days and a minimum mass of 1.66 +/- 0.26 M-J, but additional data would be needed to confirm this.
|
Brahm, R., Ulmer-Moll, S., Hobson, M. J., Jordan, A., Henning, T., Trifonov, T., et al. (2023). Three Long-period Transiting Giant Planets from TESS. Astron. J., 165(6), 227.
Abstract: We report the discovery and orbital characterization of three new transiting warm giant planets. These systems were initially identified as presenting single-transit events in the light curves generated from the full-frame images of the Transiting Exoplanet Survey Satellite. Follow-up radial velocity measurements and additional light curves were used to determine the orbital periods and confirm the planetary nature of the candidates. The planets orbit slightly metal-rich late F- and early G-type stars. We find that TOI 4406b has a mass of M ( P ) = 0.30 +/- 0.04 M (J), a radius of R ( P ) = 1.00 +/- 0.02 R (J), and a low-eccentricity orbit (e = 0.15 +/- 0.05) with a period of P = 30.08364 +/- 0.00005 days. TOI 2338b has a mass of M ( P ) = 5.98 +/- 0.20 M (J), a radius of R ( P ) = 1.00 +/- 0.01 R (J), and a highly eccentric orbit (e = 0.676 +/- 0.002) with a period of P = 22.65398 +/- 0.00002 days. Finally, TOI 2589b has a mass of M ( P ) = 3.50 +/- 0.10 M (J), a radius of R ( P ) = 1.08 +/- 0.03 R (J), and an eccentric orbit (e = 0.522 +/- 0.006) with a period of P = 61.6277 +/- 0.0002 days. TOI 4406b and TOI 2338b are enriched in metals compared to their host stars, while the structure of TOI 2589b is consistent with having similar metal enrichment to its host star.
|
Carleo, I., Gandolfi, D., Barragan, O., Livingston, J. H., Persson, C. M., Lam, K. W. F., et al. (2020). The Multiplanet System TOI-421*. Astron. J., 160(3), 23 pp.
Abstract: We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations-comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echelle Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution echelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements-and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P-b = 5.19672 +/- 0.00049 days, a mass of M-b = 7.17 +/- 0.66 M-circle plus, and a radius of R-b = R-circle plus, whereas the outer warm Neptune, TOI-421 c, has a period of P-c = 16.06819 +/- 0.00035 days, a mass of M-c = 16.42(-1.04)(+1.06)M(circle plus), a radius of R-c = 5.09(-0.15)(+0.16)R(circle plus), and a density of rho(c) = 0.685(-0.072)(+0.080) cm(-3). With its characteristics, the outer planet (rho(c) = 0.685(-0.0072)(+0.080) cm(-3)) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Ly alpha transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed.
|
Clark, J. T., Addison, B. C., Okumura, J., Vach, S., Errico, A., Heitzmann, A., et al. (2023). Spinning up a Daze: TESS Uncovers a Hot Jupiter Orbiting the Rapid Rotator TOI-778. Astron. J., 165(5), 207.
Abstract: NASA's Transiting Exoplanet Survey Satellite (TESS) mission has been uncovering a growing number of exoplanets orbiting nearby, bright stars. Most exoplanets that have been discovered by TESS orbit narrow-line, slow-rotating stars, facilitating the confirmation and mass determination of these worlds. We present the discovery of a hot Jupiter orbiting a rapidly rotating (v sin (i) = 35.1 +/- 1.0 km s(-1) early F3V-dwarf, HD 115447 (TOI-778). The transit signal taken from Sectors 10 and 37 of TESS's initial detection of the exoplanet is combined with follow-up ground-based photometry and velocity measurements taken from MINERVA-Australis, TRES, CORALIE, and CHIRON to confirm and characterize TOI-778 b. A joint analysis of the light curves and the radial velocity measurements yields a mass, a radius, and an orbital period for TOI-778 b of 2.76(-0.23)(+0.24) M-J, 1.370 +/- 0.043 R-J, and similar to 4.63 days, respectively. The planet orbits a bright (V = 9.1 mag) F3-dwarf with M = 1.40 +/- 0.05 M-circle dot, R = 1.70 +/- 0.05 R-circle dot, and log g = 4.05 +/- 0.17. We observed a spectroscopic transit of TOI-778 b, which allowed us to derive a sky-projected spin-orbit angle of 18 degrees +/- 11 degrees, consistent with an aligned planetary system. This discovery demonstrates the capability of smaller-aperture telescopes such as MINERVA-Australis to detect the radial velocity signals produced by planets orbiting broad-line, rapidly rotating stars.
|
Fernandes, R. B., Mulders, G. D., Pascucci, I., Bergsten, G. J., Koskinen, T. T., Hardegree-Ullman, K. K., et al. (2022). pterodactyls: A Tool to Uniformly Search and Vet for Young Transiting Planets in TESS Primary Mission Photometry. Astron. J., 164(3), 78.
Abstract: Kepler's short-period exoplanet population has revealed evolutionary features such as the Radius Valley and the Hot Neptune desert that are likely sculpted by atmospheric loss over time. These findings suggest that the primordial planet population is different from the Gyr-old Kepler population, and motivates exoplanet searches around young stars. Here, we present pterodactyls, a data reduction pipeline specifically built to address the challenges in discovering exoplanets around young stars and to work with TESS Primary Mission 30-minute cadence photometry, since most young stars were not preselected TESS two-minute cadence targets. pterodactyls builds on publicly available and tested tools in order to extract, detrend, search, and vet transiting young planet candidates. We search five clusters with known transiting planets: the Tucana-Horologium Association, IC 2602, Upper Centaurus Lupus, Ursa Major, and Pisces-Eridani. We show that pterodactyls recovers seven out of the eight confirmed planets and one out of the two planet candidates, most of which were initially detected in two-minute cadence data. For these clusters, we conduct injection-recovery tests to characterize our detection efficiency, and compute an intrinsic planet occurrence rate of 49% +/- 20% for sub-Neptunes and Neptunes (1.8-6 R (circle plus)) within 12.5 days, which is higher than Kepler's Gyr-old occurrence rates of 6.8% +/- 0.3%. This potentially implies that these planets have shrunk with time due to atmospheric mass loss. However, a proper assessment of the occurrence of transiting young planets will require a larger sample unbiased to planets already detected. As such, pterodactyls will be used in future work to search and vet for planet candidates in nearby clusters and moving groups.
Keywords: POWERED MASS-LOSS; ZODIACAL EXOPLANETS; RADIUS DISTRIBUTION; DWARF; HUNT; STAR; FREQUENCY; EFFICIENT; KEPLER; SYSTEM
|
Heitzmann, A., Zhou, G., Quinn, S. N., Huang, C. X., Dong, J. Y., Bouma, L. G., et al. (2023). TOI-4562b: A Highly Eccentric Temperate Jupiter Analog Orbiting a Young Field Star. Astron. J., 165(3), 121.
Abstract: We report the discovery of TOI-4562b (TIC-349576261), a Jovian planet orbiting a young F7V-type star, younger than the Praesepe/Hyades clusters (< 700 Myr). This planet stands out because of its unusually long orbital period for transiting planets with known masses (Porb = 225.11781(- 0.00022) (+0.00025 )days) and because it has a substantial eccentricity (e = 0.76(- 0.02) (+0.02)). The location of TOI-4562 near the southern continuous viewing zone of TESS allowed observations throughout 25 sectors, enabling an unambiguous period measurement from TESS alone. Alongside the four available TESS transits, we performed follow-up photometry using the South African Astronomical Observatory node of the Las Cumbres Observatory and spectroscopy with the CHIRON spectrograph on the 1.5 m SMARTS telescope. We measure a radius of 1.118 (+0.013) (-0.014) R(J )and a mass of 2.30(-0.47)(+0.48)M(J) for TOI-4562b. The radius of the planet is consistent with contraction models describing the early evolution of the size of giant planets. We detect tentative transit timing variations at the similar to 20 minutes level from five transit events, favoring the presence of a companion that could explain the dynamical history of this system if confirmed by future follow-up observations. With its current orbital configuration, tidal timescales are too long for TOI-4562b to become a hot Jupiter via high eccentricity migration though it is not excluded that interactions with the possible companion could modify TOI4562b's eccentricity and trigger circularization. The characterization of more such young systems is essential to set constraints on models describing giant-planet evolution.
|
Jenkins, J. S., Diaz, M. R., Kurtovic, N. T., Espinoza, N., Vines, J. I., Rojas, P. A. P., et al. (2020). An ultrahot Neptune in the Neptune desert. Nat. Astron., 4(12), 1148–1157.
Abstract: About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet(1,2). All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R-circle plus), or apparently rocky planets smaller than 2 R-circle plus. Such lack of planets of intermediate size (the `hot Neptune desert') has been interpreted as the inability of low-mass planets to retain any hydrogen/ helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R-circle plus and a mass of 29 M-circle plus, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite(3) revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet's mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0(-2.9)(+2.7) % of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this `ultrahot Neptune' managed to retain such an envelope. Follow-up observations of the planet's atmosphere to better understand its origin and physical nature will be facilitated by the star's brightness (V-mag = 9.8).
Keywords: PLANETS; ATMOSPHERE; EXOPLANETS; ALGORITHM; EFFICIENT; DWARFS; STARS; TOOL
|
Jordan, A., Hartman, J. D., Bayliss, D., Bakos, G. A., Brahm, R., Bryant, E. M., et al. (2022). HATS-74Ab, HATS-75b, HATS-76b, and HATS-77b: Four Transiting Giant Planets Around K and M Dwarfs. Astron. J., 163(3), 125.
Abstract: The relative rarity of giant planets around low-mass stars compared with solar-type stars is a key prediction from the core-accretion planet formation theory. In this paper we report on the discovery of four gas giant planets that transit low-mass late K and early M dwarfs. The planets HATS-74Ab (TOI737b), HATS-75b (TOI552b), HATS-76b (TOI555b), and HATS-77b (TOI730b) were all discovered from the HATSouth photometric survey and follow-up using TESS and other photometric facilities. We use the new ESPRESSO facility at the VLT to confirm systems and measure their masses. We find that these planets have masses of 1.46 +/- 0.14 MJ, 0.491 +/- 0.039 MJ, 2.629 +/- 0.089 MJ, and 1.374(-0.074)(+0.100) MJ, respectively, and radii of 1.032 +/- 0.021 RJ, 0.884 +/- 0.013 RJ, 1.079 +/- 0.031 RJ, and 1.165 +/- 0.021 RJ, respectively. The planets all orbit close to their host stars with periods ranging from 1.7319 days to 3.0876 days. With further work, we aim to test core-accretion theory by using these and further discoveries to quantify the occurrence rate of giant planets around low-mass host stars.
|
Kossakowski, D., Espinoza, N., Brahm, R., Jordan, A., Henning, T., Rojas, F., et al. (2019). TOI-150b and TOI-163b: two transiting hot Jupiters, one eccentric and one inflated, revealed by TESS near and at the edge of the JWST CVZ. Mon. Not. Roy. Astron. Soc., 490(1), 1094–1110.
Abstract: We present the discovery of TYC9191-519-1b (TOI-150b, TIC 271893367) and HD271181b (TOI-163b, TIC 179317684), two hot Jupiters initially detected using 30-min cadence Transiting Exoplanet Survey Satellite (TESS) photometry from Sector 1 and thoroughly characterized through follow-up photometry (CHAT, Hazelwood, LCO/CTIO, El Sauce, TRAPPIST-S), high-resolution spectroscopy (FEROS, CORALIE), and speckle imaging (Gemini/DSSI), confirming the planetary nature of the two signals. A simultaneous joint fit of photometry and radial velocity using a new fitting package JULIET reveals that TOI-150b is a 1.254 +/- 0.016 R-J, massive (2.61(-0.12)(+0.19) M-J) hot Jupiter in a 5.857-d orbit, while TOI-163b is an inflated (R-P = 1.478(-0.029)(+0.022) R-J, M-P = 1.219 +/- 0.11 M-J) hot Jupiter on a P = 4.231-d orbit; both planets orbit F-type stars. A particularly interesting result is that TOI-150b shows an eccentric orbit (e = 0.262(-0.037)(+0.045)), which is quite uncommon among hot Jupiters. We estimate that this is consistent, however, with the circularization time-scale, which is slightly larger than the age of the system. These two hot Jupiters are both prime candidates for further characterization – in particular, both are excellent candidates for determining spin-orbit alignments via the Rossiter-McLaughlin (RM) effect and for characterizing atmospheric thermal structures using secondary eclipse observations considering they are both located closely to the James Webb Space Telescope (JWST) Continuous Viewing Zone (CVZ).
|
Nielsen, L. D., Brahm, R., Bouchy, F., Espinoza, N., Turner, O., Rappaport, S., et al. (2020). Three short-period Jupiters from TESS: HIP 65Ab, TOI-157b, and TOI-169b. Astron. Astrophys., 639, 17 pp.
Abstract: We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI-129, TIC-201248411) is an ultra-short-period Jupiter orbiting a bright (V = 11.1 mag) K4-dwarf every 0.98 days. It is a massive 3.213 +/- 0.078 M-J planet in a grazing transit configuration with an impact parameter of b = 1.17(-0.08)(+0.10) b=1.17-0.08+0.10 . As a result the radius is poorly constrained, 2.03(-0.49)(+0.61)R(J) 2.03-0.49+0.61 RJ . The planet's distance to its host star is less than twice the separation at which it would be destroyed by Roche lobe overflow. It is expected to spiral into HIP 65A on a timescale ranging from 80 Myr to a few gigayears, assuming a reduced tidal dissipation quality factor of Q(s)(') = 10(7) – 10(9) Qs ' =107-109 . We performed a full phase-curve analysis of the TESS data and detected both illumination- and ellipsoidal variations as well as Doppler boosting. HIP 65A is part of a binary stellar system, with HIP 65B separated by 269 AU (3.95 arcsec on sky). TOI-157b (TIC 140691463) is a typical hot Jupiter with a mass of 1.18 +/- 0.13 M-J and a radius of 1.29 +/- 0.02 R-J. It has a period of 2.08 days, which corresponds to a separation of just 0.03 AU. This makes TOI-157 an interesting system, as the host star is an evolved G9 sub-giant star (V = 12.7). TOI-169b (TIC 183120439) is a bloated Jupiter orbiting a V = 12.4 G-type star. It has a mass of 0.79 +/- 0.06 M-J and a radius of 1.09(-0.05)(+0.08)R(J) 1.09-0.05+0.08<mml:msub>RJ . Despite having the longest orbital period (P = 2.26 days) of the three planets, TOI-169b receives the most irradiation and is situated on the edge of the Neptune desert. All three host stars are metal rich with [Fe / H] ranging from 0.18 to0.24.
|
Rodriguez, J. E., Quinn, S. N., Vanderburg, A., Zhou, G., Eastman, J. D., Thygesen, E., et al. (2023). Another shipment of six short-period giant planets from TESS. Mon. Not. Roy. Astron. Soc., 521(2), 2765–2785.
Abstract: We present the discovery and characterization of six short-period, transiting giant planets from NASA's Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), and TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9
|
Trifonov, T., Brahm, R., Jordan, A., Hartogh, C., Henning, T., Hobson, M. J., et al. (2023). TOI-2525 b and c: A Pair of Massive Warm Giant Planets with Strong Transit Timing Variations Revealed by TESS. Astron. J., 165(4), 179.
Abstract: The K-type star TOI-2525 has an estimated mass of M = 0.849(-0.033)(+0.024) M-circle dot and radius of R = 0.785(-0.007)(+0.007) R-circle dot observed by the TESS mission in 22 sectors (within sectors 1 and 39). The TESS light curves yield significant transit events of two companions, which show strong transit timing variations (TTVs) with a semiamplitude of similar to 6 hr. We performed TTV dynamical and photodynamical light-curve analysis of the TESS data combined with radial velocity measurements from FEROS and PFS, and we confirmed the planetary nature of these companions. The TOI-2525 system consists of a transiting pair of planets comparable to Neptune and Jupiter with estimated dynamical masses of m(b) = 0.088(-0.004)(+0.005) and m(c) = 0.709(-0.033)(+0.034) M-Jup, radii of r(b) = 0.88(-0.02)(+0.02) and r(c) = 0.98(-0.02)(+0.02) R-Jup, and orbital periods of P-b = 23.288(-0.002)(+0.001) and P-c = 49.260(-0.001)(+0.001) days for the inner and outer planet, respectively. The period ratio is close to the 2:1 period commensurability, but the dynamical simulations of the system suggest that it is outside the mean-motion resonance (MMR) dynamical configuration. Object TOI-2525 b is among the lowest-density Neptune-mass planets known to date, with an estimated median density of rho(b) = 0.174(-0.015)(+0.016) g cm(-3). The TOI-2525 system is very similar to the other K dwarf systems discovered by TESS, TOI-2202 and TOI-216, which are composed of almost identical K dwarf primaries and two warm giant planets near the 2:1 MMR.
Keywords: HOT JUPITERS; EXOPLANET SURVEY; SUPER-EARTH; LOW-DENSITY; SYSTEMS; NEPTUNE; STAR; II.; POPULATION; MIGRATION
|
Yee, S. W., Winn, J. N., Hartman, J. D., Rodriguez, J. E., Zhou, G., Quinn, S. N., et al. (2022). The TESS Grand Unified Hot Jupiter Survey. I. Ten TESS Planets. Astron. J., 164(2), 70.
Abstract: Hot Jupiters-short-period giant planets-were the first extrasolar planets to be discovered, but many questions about their origin remain. NASA's Transiting Exoplanet Survey Satellite (TESS), an all-sky search for transiting planets, presents an opportunity to address these questions by constructing a uniform sample of hot Jupiters for demographic study through new detections and unifying the work of previous ground-based transit surveys. As the first results of an effort to build this large sample of planets, we report here the discovery of 10 new hot Jupiters (TOI-2193A b, TOI-2207b, TOI-2236b, TOI-2421b, TOI-2567b, TOI-2570b, TOI-3331b, TOI-3540A b, TOI-3693b, TOI-4137b). All of the planets were identified as planet candidates based on periodic flux dips observed by TESS, and were subsequently confirmed using ground-based time-series photometry, high-angular-resolution imaging, and high-resolution spectroscopy coordinated with the TESS Follow-up Observing Program. The 10 newly discovered planets orbit relatively bright F and G stars (G < 12.5, T (eff) between 4800 and 6200 K). The planets' orbital periods range from 2 to 10 days, and their masses range from 0.2 to 2.2 Jupiter masses. TOI-2421b is notable for being a Saturn-mass planet and TOI-2567b for being a “sub-Saturn,” with masses of 0.322 +/- 0.073 and 0.195 +/- 0.030 Jupiter masses, respectively. We also measured a detectably eccentric orbit (e = 0.17 +/- 0.05) for TOI-2207b, a planet on an 8 day orbit, while placing an upper limit of e < 0.052 for TOI-3693b, which has a 9 day orbital period. The 10 planets described here represent an important step toward using TESS to create a large and statistically useful sample of hot Jupiters.
Keywords: GIANT PLANETS; K-DWARF; TRANSITING PLANETS; ERROR-CORRECTION; LIGHT CURVES; STARS; SOLAR; SEARCH; TELESCOPE; PROJECT
|