ColiniBaldeschi, R., Cominetti, R., & Scarsini, M. (2019). Price of Anarchy for Highly Congested Routing Games in Parallel Networks. Theor. Comput. Syst., 63(1), 90–113.
Abstract: We consider nonatomic routing games with one source and one destination connected by multiple parallel edges. We examine the asymptotic behavior of the price of anarchy as the inflow increases. In accordance with some empirical observations, we prove that under suitable conditions on the costs the price of anarchy is asymptotic to one. We show with some counterexamples that this is not always the case, and that these counterexamples already occur in simple networks with only 2 parallel links.

ColiniBaldeschi, R., Cominetti, R., Mertikopoulos, P., & Scarsini, M. (2020). When Is Selfish Routing Bad? The Price of Anarchy in Light and Heavy Traffic. Oper. Res., 68(2), 411–434.
Abstract: This paper examines the behavior of the price of anarchy as a function of the traffic inflow in nonatomic congestion games with multiple origin/destination (O/D) pairs. Empirical studies in realworld networks show that the price of anarchy is close to 1 in both light and heavy traffic, thus raising the following question: can these observations be justified theoretically? We first show that this is not always the case: the price of anarchy may remain a positive distance away from 1 for all values of the traffic inflow, even in simple threelink networks with a single O/D pair and smooth, convex costs. On the other hand, for a large class of cost functions (including all polynomials) and inflow patterns, the price of anarchy does converge to 1 in both heavy and light traffic, irrespective of the network topology and the number of O/D pairs in the network. We also examine the rate of convergence of the price of anarchy, and we show that it follows a power law whose degree can be computed explicitly when the network's cost functions are polynomials.
