|
Addison, B. C., Wright, D. J., Nicholson, B. A., Cale, B., Mocnik, T., Huber, D., et al. (2021). TOI-257b (HD 19916b): a warm sub-saturn orbiting an evolved F-type star. Mon. Not. Roy. Astron. Soc., 502(3), 3704–3722.
Abstract: We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the MINERVA-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of M-P = 0.138 +/- 0.023M(J) (43.9 +/- 7.3 M-circle plus), a radius of R-P = 0.639 +/- 0.013 R-J (7.16 +/- 0.15 R-circle plus), bulk density of 0.65(-0.11)(+0.12) (cgs), and period 18.38818(-0.00084)(+0.00085) days. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M-* = 1.390 +/- 0.046(Msun), R-* = 1.888 +/- 0.033 R-sun, T-eff = 6075 +/- 90 K, and vsin i = 11.3 +/- 0.5 kms(-1). Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a similar to 71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (similar to 100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems.
|
|
|
Ahrer, E. M., Alderson, L., Batalha, N. M., Batalha, N. E., Bean, J. L., Beatty, T. G., et al. (2023). Identification of carbon dioxide in an exoplanet atmosphere. Nature, Early Access.
Abstract: Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called 'metallicity')(1-3), and thus the formation processes of the primary atmospheres of hot gas giants(4-6). It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets(7-9). Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification(10-12). Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme(13,14). The data used in this study span 3.0-5.5micrometres in wavelength and show a prominent CO2 absorption feature at 4.3micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative-convective-thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0micrometres that is not reproduced by these models.
|
|
|
Brahm, R., Ulmer-Moll, S., Hobson, M. J., Jordan, A., Henning, T., Trifonov, T., et al. (2023). Three Long-period Transiting Giant Planets from TESS. Astron. J., 165(6), 227.
Abstract: We report the discovery and orbital characterization of three new transiting warm giant planets. These systems were initially identified as presenting single-transit events in the light curves generated from the full-frame images of the Transiting Exoplanet Survey Satellite. Follow-up radial velocity measurements and additional light curves were used to determine the orbital periods and confirm the planetary nature of the candidates. The planets orbit slightly metal-rich late F- and early G-type stars. We find that TOI 4406b has a mass of M ( P ) = 0.30 +/- 0.04 M (J), a radius of R ( P ) = 1.00 +/- 0.02 R (J), and a low-eccentricity orbit (e = 0.15 +/- 0.05) with a period of P = 30.08364 +/- 0.00005 days. TOI 2338b has a mass of M ( P ) = 5.98 +/- 0.20 M (J), a radius of R ( P ) = 1.00 +/- 0.01 R (J), and a highly eccentric orbit (e = 0.676 +/- 0.002) with a period of P = 22.65398 +/- 0.00002 days. Finally, TOI 2589b has a mass of M ( P ) = 3.50 +/- 0.10 M (J), a radius of R ( P ) = 1.08 +/- 0.03 R (J), and an eccentric orbit (e = 0.522 +/- 0.006) with a period of P = 61.6277 +/- 0.0002 days. TOI 4406b and TOI 2338b are enriched in metals compared to their host stars, while the structure of TOI 2589b is consistent with having similar metal enrichment to its host star.
|
|
|
Espinoza, N., Brahm, R., Henning, T., Jordan, A., Dorn, C., Rojas, F., et al. (2020). HD 213885b: a transiting 1-d-period super-Earth with an Earth-like composition around a bright (V=7.9) star unveiled by TESS. Mon. Not. Roy. Astron. Soc., 491(2), 2982–2999.
Abstract: We report the discovery of the 1.008-d, ultrashort period (USP) super-EarthHD213885b (TOI141b) orbiting the bright (V= 7.9) star HD 213885 (TOI-141, TIC 403224672), detected using photometry from the recently launched TESS mission. Using FEROS, HARPS, and CORALIE radial velocities, we measure a precise mass of 8.8 +/- 0.6M. for this 1.74 +/- 0.05 R. exoplanet, which provides enough information to constrain its bulk composition – similar to Earth's but enriched in iron. The radius, mass, and stellar irradiation of HD 213885b are, given our data, very similar to 55 Cancri e, making this exoplanet a good target to perform comparative exoplanetology of short period, highly irradiated super-Earths. Our precise radial velocities reveal an additional 4.78-d signal which we interpret as arising from a second, non-transiting planet in the system, HD 213885c, whoseminimum mass of 19.9 +/- 1.4M. makes it consistent with being a Neptune-mass exoplanet. The HD 213885 system is very interesting from the perspective of future atmospheric characterization, being the second brightest star to host an USP transiting super-Earth (with the brightest star being, in fact, 55 Cancri). Prospects for characterization with present and future observatories are discussed.
|
|
|
Heitzmann, A., Zhou, G., Quinn, S. N., Huang, C. X., Dong, J. Y., Bouma, L. G., et al. (2023). TOI-4562b: A Highly Eccentric Temperate Jupiter Analog Orbiting a Young Field Star. Astron. J., 165(3), 121.
Abstract: We report the discovery of TOI-4562b (TIC-349576261), a Jovian planet orbiting a young F7V-type star, younger than the Praesepe/Hyades clusters (< 700 Myr). This planet stands out because of its unusually long orbital period for transiting planets with known masses (Porb = 225.11781(- 0.00022) (+0.00025 )days) and because it has a substantial eccentricity (e = 0.76(- 0.02) (+0.02)). The location of TOI-4562 near the southern continuous viewing zone of TESS allowed observations throughout 25 sectors, enabling an unambiguous period measurement from TESS alone. Alongside the four available TESS transits, we performed follow-up photometry using the South African Astronomical Observatory node of the Las Cumbres Observatory and spectroscopy with the CHIRON spectrograph on the 1.5 m SMARTS telescope. We measure a radius of 1.118 (+0.013) (-0.014) R(J )and a mass of 2.30(-0.47)(+0.48)M(J) for TOI-4562b. The radius of the planet is consistent with contraction models describing the early evolution of the size of giant planets. We detect tentative transit timing variations at the similar to 20 minutes level from five transit events, favoring the presence of a companion that could explain the dynamical history of this system if confirmed by future follow-up observations. With its current orbital configuration, tidal timescales are too long for TOI-4562b to become a hot Jupiter via high eccentricity migration though it is not excluded that interactions with the possible companion could modify TOI4562b's eccentricity and trigger circularization. The characterization of more such young systems is essential to set constraints on models describing giant-planet evolution.
|
|
|
Hobson, M. J., Brahm, R., Jordan, A.., Espinoza, N., Kossakowski, D., Henning, T., et al. (2021). A Transiting Warm Giant Planet around the Young Active Star TOI-201. Astron. J., 161(5), 235.
Abstract: We present the confirmation of the eccentric warm giant planet TOI-201 b, first identified as a candidate in Transiting Exoplanet Survey Satellite photometry (Sectors 1-8, 10-13, and 27-28) and confirmed using groundbased photometry from Next Generation Transit Survey and radial velocities from FEROS, HARPS, CORALIE, and MINERVA-Australis. TOI-201 b orbits a young (0.87(-0.49)(+0.46)) and bright (V = 9.07 mag) F-type star with a 52.9781 day period. The planet has a mass of 0.42(-0.03)(+0.05) M-J, a radius of 1.008(-0.015)(+0.012) R-J, and an orbital eccentricity of 0.28(-0.09)(+0.06); it appears to still be undergoing fairly rapid cooling, as expected given the youth of the host star. The star also shows long-term variability in both the radial velocities and several activity indicators, which we attribute to stellar activity. The discovery and characterization of warm giant planets such as TOI-201 b are important for constraining formation and evolution theories for giant planets.
|
|
|
Jordan, A., Brahm, R., Espinoza, N., Henning, T., Jones, M. I., Kossakowski, D., et al. (2020). TOI-677b: A Warm Jupiter (P=11.2 days) on an Eccentric Orbit Transiting a Late F-type Star. Astron. J., 159(4), 10 pp.
Abstract: We report the discovery of TOI-677.b, first identified as a candidate in light curves obtained within Sectors 9 and 10 of the Transiting Exoplanet Survey Satellite (TESS) mission and confirmed with radial velocities. TOI-677.b has a mass of M-p = 1.236(-0.067)(+0.069) M-J, a radius of R-P = 1.170 +/- 0.03 R-J, and orbits its bright host star (V=.9.8 mag) with an orbital period of 11.23660 +/- 0.00011 d, on an eccentric orbit with e = 0.435 +/- 0.024. The host star has a mass of M-star = 1.181 +/- 0.058 M-circle dot, a radius of R. = 1.28(-0.03)(+0.03) R-circle dot, an age of 2.92(-0.73)(+0.80) Gyr and solar metallicity, properties consistent with a main-sequence late-F star with T-eff = 6295 +/- 77 K. We find evidence in the radial velocity measurements of a secondary long-term signal, which could be due to an outer companion. The TOI-677.b system is a well-suited target for Rossiter-Mclaughlin observations that can constrain migration mechanisms of close-in giant planets.
|
|
|
Kaye, L., Vissapragada, S., Gunther, M. N., Aigrain, S., Mikal-Evans, T., Jensen, E. L. N., et al. (2022). Transit timings variations in the three-planet system: TOI-270. Mon. Not. Roy. Astron. Soc., 510(4), 5464–5485.
Abstract: We present ground- and space-based photometric observations of TOI-270 (L231-32), a system of three transiting planets consisting of one super-Earth and two sub-Neptunes discovered by TESS around a bright (K-mag = 8.25) M3V dwarf. The planets orbit near low-order mean-motion resonances (5:3 and 2:1) and are thus expected to exhibit large transit timing variations (TTVs). Following an extensive observing campaign using eight different observatories between 2018 and 2020, we now report a clear detection of TTVs for planets c and d, with amplitudes of similar to 10 min and a super-period of similar to 3 yr, as well as significantly refined estimates of the radii and mean orbital periods of all three planets. Dynamical modelling of the TTVs alone puts strong constraints on the mass ratio of planets c and d and on their eccentricities. When incorporating recently published constraints from radial velocity observations, we obtain masses of M-b = 1.48 +/- 0.18 M-circle plus, M-c = 6.20 +/- 0.31 M-circle plus, and M-d = 4.20 +/- 0.16 M-circle plus for planets b, c, and d, respectively. We also detect small but significant eccentricities for all three planets : e(b) = 0.0167 +/- 0.0084, e(c) = 0.0044 +/- 0.0006, and e(d) = 0.0066 +/- 0.0020. Our findings imply an Earth-like rocky composition for the inner planet, and Earth-like cores with an additional He/H2O atmosphere for the outer two. TOI-270 is now one of the best constrained systems of small transiting planets, and it remains an excellent target for atmospheric characterization.
|
|
|
Psaridi, A., Bouchy, F., Lendl, M., Akinsanmi, B., Stassun, K. G., Smalley, B., et al. (2023). Three Saturn-mass planets transiting F-type stars revealed with TESS and HARPS TOI-615b, TOI-622b, and TOI-2641b. Astron. Astrophys., 675, A39.
Abstract: While the sample of confirmed exoplanets continues to grow, the population of transiting exoplanets around early-type stars is still limited. These planets allow us to investigate the planet properties and formation pathways over a wide range of stellar masses and study the impact of high irradiation on hot Jupiters orbiting such stars. We report the discovery of TOI-615b, TOI-622b, and TOI-2641b, three Saturn-mass planets transiting main sequence, F-type stars. The planets were identified by the Transiting Exoplanet Survey Satellite (TESS) and confirmed with complementary ground-based and radial velocity observations. TOI-615b is a highly irradiated (similar to 1277 F-circle dot) and bloated Saturn-mass planet (1.69(-0.06)(+0.05) R-Jup and 0.43(-0.08)(+0.09) M-Jup) in a 4.66 day orbit transiting a 6850 K star. TOI-622b has a radius of 0.82(-0.03)(+0.03) R-Jup and a mass of 0.30(-0.08)(+0.07) M-Jup in a 6.40 day orbit. Despite its high insolation flux (similar to 600 F-circle dot), TOI-622b does not show any evidence of radius inflation. TOI-2641b is a 0.39(-0.04)(+0.02) M-Jup planet in a 4.88 day orbit with a grazing transit (b = 1.04(-0.06)(+0.05)) that results in a poorly constrained radius of 1.61(-0.64)(+0.46) R-Jup. Additionally, TOI-615b is considered attractive for atmospheric studies via transmission spectroscopy with ground-based spectrographs and JWST. Future atmospheric and spin-orbit alignment observations are essential since they can provide information on the atmospheric composition, formation, and migration of exoplanets across various stellar types.
|
|
|
Trifonov, T., Brahm, R., Espinoza, N., Henning, T., Jordan, A., Nesvorny, D., et al. (2021). A Pair of Warm Giant Planets near the 2:1 Mean Motion Resonance around the K-dwarf Star TOI-2202*. Astron. J., 162(6), 283.
Abstract: TOI-2202 b is a transiting warm Jovian-mass planet with an orbital period of P = 11.91 days identified from the Full Frame Images data of five different sectors of the TESS mission. Ten TESS transits of TOI-2202 b combined with three follow-up light curves obtained with the CHAT robotic telescope show strong transit timing variations (TTVs) with an amplitude of about 1.2 hr. Radial velocity follow-up with FEROS, HARPS, and PFS confirms the planetary nature of the transiting candidate (a (b) = 0.096 +/- 0.001 au, m (b) = 0.98 +/- 0.06 M (Jup)), and a dynamical analysis of RVs, transit data, and TTVs points to an outer Saturn-mass companion (a (c) = 0.155 +/- 0.002 au, m (c) = 0.37 +/- 0.10 M (Jup)) near the 2:1 mean motion resonance. Our stellar modeling indicates that TOI-2202 is an early K-type star with a mass of 0.82 M (circle dot), a radius of 0.79 R (circle dot), and solar-like metallicity. The TOI-2202 system is very interesting because of the two warm Jovian-mass planets near the 2:1 mean motion resonance, which is a rare configuration, and their formation and dynamical evolution are still not well understood.
|
|