Varona, J., De Fazio, R., Velazquez, R., Giannoccaro, N. I., Carrasco, M., & Visconti, P. (2020). MEMS-based Micro-scale Wind Turbines as Energy Harvesters of the Convective Airflows in Microelectronic Circuits. Int. J. Renew. Energy. Res., 10(3), 1213–1225.
Abstract: As an alternative to conventional batteries and other energy scavenging techniques, this paper introduces the idea of using micro-turbines to extract energy from wind forces at the microscale level and to supply power to battery-less microsystems. Fundamental research efforts on the design, fabrication, and test of micro-turbines with blade lengths of just 160 μm are presented in this paper along with analytical models and preliminary experimental results. The proof-of-concept prototypes presented herein were fabricated using a standard polysilicon surface micro-machining silicon technology (PolyMUMPs) and could effectively transform the kinetic energy of the available wind into a torque that might drive an electric generator or directly power supply a micro-mechanical system. Since conventional batteries do not scale-down well to the microscale, wind micro-turbines have the potential for becoming a practical alternative power source for microsystems, as well as for extending the operating range of devices running on batteries.
|
Tachiquin, R., Velazquez, R., Del-Valle-Soto, C., Gutierrez, C. A., Carrasco, M., De Fazio, R., et al. (2021). Wearable Urban Mobility Assistive Device for Visually Impaired Pedestrians Using a Smartphone and a Tactile-Foot Interface.21(16), 5274.
Abstract: This paper reports on the progress of a wearable assistive technology (AT) device designed to enhance the independent, safe, and efficient mobility of blind and visually impaired pedestrians in outdoor environments. Such device exploits the smartphone's positioning and computing capabilities to locate and guide users along urban settings. The necessary navigation instructions to reach a destination are encoded as vibrating patterns which are conveyed to the user via a foot-placed tactile interface. To determine the performance of the proposed AT device, two user experiments were conducted. The first one requested a group of 20 voluntary normally sighted subjects to recognize the feedback provided by the tactile-foot interface. The results showed recognition rates over 93%. The second experiment involved two blind voluntary subjects which were assisted to find target destinations along public urban pathways. Results show that the subjects successfully accomplished the task and suggest that blind and visually impaired pedestrians might find the AT device and its concept approach useful, friendly, fast to master, and easy to use.
|
de Fazio, R., Giannoccaro, N. I., Carrasco, M., Velazquez, R., & Visconti, P. (2021). Wearable devices and IoT applications for symptom detection, infection tracking, and diffusion containment of the COVID-19 pandemic: a survey. Front. Inf. Technol. Electron. Eng., 22(11), 1413–1442.
Abstract: Until a safe and effective vaccine to fight the SARS-CoV-2 virus is developed and available for the global population, preventive measures, such as wearable tracking and monitoring systems supported by Internet of Things (IoT) infrastructures, are valuable tools for containing the pandemic. In this review paper we analyze innovative wearable systems for limiting the virus spread, early detection of the first symptoms of the coronavirus disease COVID-19 infection, and remote monitoring of the health conditions of infected patients during the quarantine. The attention is focused on systems allowing quick user screening through ready-to-use hardware and software components. Such sensor-based systems monitor the principal vital signs, detect symptoms related to COVID-19 early, and alert patients and medical staff. Novel wearable devices for complying with social distancing rules and limiting interpersonal contagion (such as smart masks) are investigated and analyzed. In addition, an overview of implantable devices for monitoring the effects of COVID-19 on the cardiovascular system is presented. Then we report an overview of tracing strategies and technologies for containing the COVID-19 pandemic based on IoT technologies, wearable devices, and cloud computing. In detail, we demonstrate the potential of radio frequency based signal technology, including Bluetooth Low Energy (BLE), Wi-Fi, and radio frequency identification (RFID), often combined with Apps and cloud technology. Finally, critical analysis and comparisons of the different discussed solutions are presented, highlighting their potential and providing new insights for developing innovative tools for facing future pandemics.
|
Carrasco, M., Mery, D., Concha, A., Velazquez, R., De Fazio, R., & Visconti, P. (2021). An Efficient Point-Matching Method Based on Multiple Geometrical Hypotheses. Electronics, 10(3), 246.
Abstract: Point matching in multiple images is an open problem in computer vision because of the numerous geometric transformations and photometric conditions that a pixel or point might exhibit in the set of images. Over the last two decades, different techniques have been proposed to address this problem. The most relevant are those that explore the analysis of invariant features. Nonetheless, their main limitation is that invariant analysis all alone cannot reduce false alarms. This paper introduces an efficient point-matching method for two and three views, based on the combined use of two techniques: (1) the correspondence analysis extracted from the similarity of invariant features and (2) the integration of multiple partial solutions obtained from 2D and 3D geometry. The main strength and novelty of this method is the determination of the point-to-point geometric correspondence through the intersection of multiple geometrical hypotheses weighted by the maximum likelihood estimation sample consensus (MLESAC) algorithm. The proposal not only extends the methods based on invariant descriptors but also generalizes the correspondence problem to a perspective projection model in multiple views. The developed method has been evaluated on three types of image sequences: outdoor, indoor, and industrial. Our developed strategy discards most of the wrong matches and achieves remarkable F-scores of 97%, 87%, and 97% for the outdoor, indoor, and industrial sequences, respectively.
|