|
Benavides, C., Diaz, M., O' Ryan, R., Gwinner, S., & Sierra, E. (2021). Methodology to analyse the impact of an emissions trading system in Chile. Clim. Policy, 21(8), 1099–1110.
Abstract: In the context of updating the 2015 Nationally Determined Contribution (NDC), the government of Chile has updated its estimates of compliance costs for a series of mitigation actions with an emphasis on the energy sector as the main source of its greenhouse gas emissions. Using the information developed in this process, we assess the impact on compliance costs of increasing the flexibility for sources by introducing different emissions trading schemes. For this we develop a detailed optimization model that represents the operational and investment decisions that could be taken by the energy generation, industrial and mining sectors if an Emissions Trading System (ETS) was implemented. An ETS with two cap and trade options is analysed together with an offset mechanism for sources not included in the ETS. Also, two policy goals are considered: a stringent 76% sectoral reduction goal in 2050 similar to Chile's current strict NDC, and a more lax 46% goal similar to Chile's initial 2015 NDC proposal. The results show that (i) cost reductions from increased flexibility for Chile's current strict NDC are significant, and that offsets can play an important role; (ii) the stringency of the reduction goal affects the magnitude of the cost savings related to flexibility and, surprisingly, total abatement costs are negative (i.e. there are benefits) for the 46% reduction goal. In this latter case, the most significant cost reductions result from compelling firms to comply with their allowances in each sector, not increased flexibility. These results highlight the policy relevance of case by case analysis using a modelling approach similar to the one we develop here. Key policy insights ETS implementation can help Chile meet its mitigation commitment for 2050. The compliance costs can vary significantly depending on the flexibility implemented in the emissions trading schemes. Optimization models can help decision-makers define the attributes of an ETS, such as the sectors that should participate, the cap, and the percentage of offsets. The proposed methodology also highlights and quantifies the offsets that can be acquired from sectors that are not part of an ETS, such as forestry, agriculture, and the waste sector. The possibility to acquire of offsets could reduce significantly the cost for industries that participate of an ETS.
|
|
|
Carleo, I., Gandolfi, D., Barragan, O., Livingston, J. H., Persson, C. M., Lam, K. W. F., et al. (2020). The Multiplanet System TOI-421*. Astron. J., 160(3), 23 pp.
Abstract: We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations-comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echelle Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution echelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements-and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P-b = 5.19672 +/- 0.00049 days, a mass of M-b = 7.17 +/- 0.66 M-circle plus, and a radius of R-b = R-circle plus, whereas the outer warm Neptune, TOI-421 c, has a period of P-c = 16.06819 +/- 0.00035 days, a mass of M-c = 16.42(-1.04)(+1.06)M(circle plus), a radius of R-c = 5.09(-0.15)(+0.16)R(circle plus), and a density of rho(c) = 0.685(-0.072)(+0.080) cm(-3). With its characteristics, the outer planet (rho(c) = 0.685(-0.0072)(+0.080) cm(-3)) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Ly alpha transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed.
|
|
|
de la Guardia, A. R. H., Ugalde, M. B., Lobos-Diaz, V., Romero-Romero, J. L., Meyer-Regueiro, C., Inostroza-Blancheteau, C., et al. (2021). Isolation and molecular characterization of MYB60 in Solanum lycopersicum. Mol. Biol. Rep., 48(2), 1579–1587.
Abstract: Stomatal closure is a common adaptation response of plants to the onset of drought condition and its regulation is controlled by transcription factors. MYB60, a transcription factor involved in the regulation of light-induced stomatal opening, has been characterized in arabidopsis and grapevine. In this work, we studied the role of MYB60 homolog SIMYB60 in tomato plants. We identified, isolated, and sequenced the SIMYB60 coding sequence, and found domains and motifs characteristic of other MYB60 proteins. We determined that SlMYB60 is mainly expressed in leaves, and its expression is repressed by abscisic acid. Next, we isolated a putative promoter region containing regulatory elements responsible for guard cell expression and other putative regulatory elements related to ABA repression and vascular tissue expression. Protein localization assays demonstrated that SlMYB60 localizes to the nucleus. Finally, SlMYB60 is able to complement the mutant phenotype of atmyb60-1 in Arabidopsis. Together, these results indicate that SlMYB60 is the homologous gene in tomato and potentially offer a molecular target to improve crops.
|
|
|
Espinoza, N., Brahm, R., Henning, T., Jordan, A., Dorn, C., Rojas, F., et al. (2020). HD 213885b: a transiting 1-d-period super-Earth with an Earth-like composition around a bright (V=7.9) star unveiled by TESS. Mon. Not. Roy. Astron. Soc., 491(2), 2982–2999.
Abstract: We report the discovery of the 1.008-d, ultrashort period (USP) super-EarthHD213885b (TOI141b) orbiting the bright (V= 7.9) star HD 213885 (TOI-141, TIC 403224672), detected using photometry from the recently launched TESS mission. Using FEROS, HARPS, and CORALIE radial velocities, we measure a precise mass of 8.8 +/- 0.6M. for this 1.74 +/- 0.05 R. exoplanet, which provides enough information to constrain its bulk composition – similar to Earth's but enriched in iron. The radius, mass, and stellar irradiation of HD 213885b are, given our data, very similar to 55 Cancri e, making this exoplanet a good target to perform comparative exoplanetology of short period, highly irradiated super-Earths. Our precise radial velocities reveal an additional 4.78-d signal which we interpret as arising from a second, non-transiting planet in the system, HD 213885c, whoseminimum mass of 19.9 +/- 1.4M. makes it consistent with being a Neptune-mass exoplanet. The HD 213885 system is very interesting from the perspective of future atmospheric characterization, being the second brightest star to host an USP transiting super-Earth (with the brightest star being, in fact, 55 Cancri). Prospects for characterization with present and future observatories are discussed.
|
|
|
Jenkins, J. S., Diaz, M. R., Kurtovic, N. T., Espinoza, N., Vines, J. I., Rojas, P. A. P., et al. (2020). An ultrahot Neptune in the Neptune desert. Nat. Astron., 4(12), 1148–1157.
Abstract: About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet(1,2). All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R-circle plus), or apparently rocky planets smaller than 2 R-circle plus. Such lack of planets of intermediate size (the `hot Neptune desert') has been interpreted as the inability of low-mass planets to retain any hydrogen/ helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R-circle plus and a mass of 29 M-circle plus, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite(3) revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet's mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0(-2.9)(+2.7) % of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this `ultrahot Neptune' managed to retain such an envelope. Follow-up observations of the planet's atmosphere to better understand its origin and physical nature will be facilitated by the star's brightness (V-mag = 9.8).
|
|
|
O' Ryan, R., Benavides, C., Diaz, M., San Martin, J. P., & Mallea, J. (2019). Using probabilistic analysis to improve greenhouse gas baseline forecasts in developing country contexts: the case of Chile. Clim. Policy, 19(3), 299–314.
Abstract: In this paper, initial steps are presented toward characterizing, quantifying, incorporating and communicating uncertainty applying a probabilistic analysis to countrywide emission baseline forecasts, using Chile as a case study. Most GHG emission forecasts used by regulators are based on bottom-up deterministic approaches. Uncertainty is usually incorporated through sensitivity analysis and/or use of different scenarios. However, much of the available information on uncertainty is not systematically included. The deterministic approach also gives a wide range of variation in values without a clear sense of probability of the expected emissions, making it difficult to establish both the mitigation contributions and the subsequent policy prescriptions for the future. To improve on this practice, we have systematically included uncertainty into a bottom-up approach, incorporating it in key variables that affect expected GHG emissions, using readily available information, and establishing expected baseline emissions trajectories rather than scenarios. The resulting emission trajectories make explicit the probability percentiles, reflecting uncertainties as well as possible using readily available information in a manner that is relevant to the decision making process. Additionally, for the case of Chile, contradictory deterministic results are eliminated, and it is shown that, whereas under a deterministic approach Chile's mitigation ambition does not seem high, the probabilistic approach suggests this is not necessarily the case. It is concluded that using a probabilistic approach allows a better characterization of uncertainty using existing data and modelling capacities that are usually weak in developing country contexts. Key policy insights Probabilistic analysis allows incorporating uncertainty systematically into key variables for baseline greenhouse gas emission scenario projections. By using probabilistic analysis, the policymaker can be better informed as to future emission trajectories. Probabilistic analysis can be done with readily available data and expertise, using the usual models preferred by policymakers, even in developing country contexts.
|
|
|
Romero-Romero, J. L., Inostroza-Blancheteau, C., Orellana, D., Aquea, F., Reyes-Diaz, M., Gil, P. M., et al. (2018). Stomata regulation by tissue-specific expression of the Citrus sinensis MYB61 transcription factor improves water-use efficiency in Arabidopsis. Plant Physiol. Biochem., 130, 54–60.
Abstract: Water-use efficiency (WUE) is a quantitative measurement of biomass produced per volume of water transpired by a plant. WUE is an important physiological trait for drought response to mitigate the water deficiency. In this work, a cisgenic construction from Citrus sinensis was developed and its function in the improvement of WUE was evaluated in Arabidopsis. Sequences of the CsMYB61 coding region, a transcription factor implicated in the closure of stomata, together with a putative stomata-specific promoter from CsMYB.1.5, were identified and cloned. The protein encoded in the CsMYB61 locus harbors domains and motifs characteristic of MYB61 proteins. In addition, a 1.2 kb promoter region of the gene CsMYB15 (pCsMYB15) containing regulatory elements for expression in guard cells and in response to Abscisic Acid (ABA) and light was isolated. In Arabidopsis, pCsMYB15 directs the expression of the reporter gene GUS in stomata in the presence of light. In addition, transgenic lines expressing the CsMYB61 coding region under transcriptional control of pCsMYB15 have a normal phenotype under in vitro and greenhouse conditions. These transgenic lines exhibited a smaller opening of the stomata pore, lower stomatal conductance and respiration rate, enhanced sensitivity to exogenous ABA, and high drought stress tolerance. Our results indicate that stomata-specific expression of CsMYB61 enhances water use efficiency under drought conditions in Arabidospis.
|
|
|
Trifonov, T., Brahm, R., Espinoza, N., Henning, T., Jordan, A., Nesvorny, D., et al. (2021). A Pair of Warm Giant Planets near the 2:1 Mean Motion Resonance around the K-dwarf Star TOI-2202*. Astron. J., 162(6), 283.
Abstract: TOI-2202 b is a transiting warm Jovian-mass planet with an orbital period of P = 11.91 days identified from the Full Frame Images data of five different sectors of the TESS mission. Ten TESS transits of TOI-2202 b combined with three follow-up light curves obtained with the CHAT robotic telescope show strong transit timing variations (TTVs) with an amplitude of about 1.2 hr. Radial velocity follow-up with FEROS, HARPS, and PFS confirms the planetary nature of the transiting candidate (a (b) = 0.096 +/- 0.001 au, m (b) = 0.98 +/- 0.06 M (Jup)), and a dynamical analysis of RVs, transit data, and TTVs points to an outer Saturn-mass companion (a (c) = 0.155 +/- 0.002 au, m (c) = 0.37 +/- 0.10 M (Jup)) near the 2:1 mean motion resonance. Our stellar modeling indicates that TOI-2202 is an early K-type star with a mass of 0.82 M (circle dot), a radius of 0.79 R (circle dot), and solar-like metallicity. The TOI-2202 system is very interesting because of the two warm Jovian-mass planets near the 2:1 mean motion resonance, which is a rare configuration, and their formation and dynamical evolution are still not well understood.
|
|