Efraimidis, I., FerradaSalas, A., Hernandez, R., & Vargas, R. (2021). Schwarzian derivatives for pluriharmonic mappings. J. Math. Anal. Appl., 495(1), 124716.
Abstract: A preSchwarzian and a Schwarzian derivative for locally univalent pluriharmonic mappings in Cn are introduced. Basic properties such as the chain rule, multiplicative invariance and affine invariance are proved for these operators. It is shown that the preSchwarzian is stable only with respect to rotations of the identity. A characterization is given for the case when the preSchwarzian derivative is holomorphic. Furthermore, it is shown that if the Schwarzian derivative of a pluriharmonic mapping vanishes then the analytic part of this mapping is a Mobius transformation. Some observations are made related to the dilatation of pluriharmonic mappings and to the dilatation of their affine transformations, revealing differences between the theories in the plane and in higher dimensions. An example is given that rules out the possibility for a shear construction theorem to hold in Cn, for n >= 2. (C) 2020 Elsevier Inc. All rights reserved.

Efraimidis, I., Gaona, J., Hernandez, R., & Venegas, O. (2017). On harmonic Blochtype mappings. Complex Var. Elliptic Equ., 62(8), 1081–1092.
Abstract: Let f be a complexvalued harmonicmapping defined in the unit disk D. We introduce the following notion: we say that f is a Blochtype function if its Jacobian satisfies This gives rise to a new class of functions which generalizes and contains the wellknown analytic Bloch space. We give estimates for the schlicht radius, the growth and the coefficients of functions in this class. We establish an analogue of the theorem which, roughly speaking, states that for. analytic log. is Bloch if and only if. is univalent.
