|
Carleo, I., Gandolfi, D., Barragan, O., Livingston, J. H., Persson, C. M., Lam, K. W. F., et al. (2020). The Multiplanet System TOI-421*. Astron. J., 160(3), 23 pp.
Abstract: We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations-comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echelle Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution echelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements-and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P-b = 5.19672 +/- 0.00049 days, a mass of M-b = 7.17 +/- 0.66 M-circle plus, and a radius of R-b = R-circle plus, whereas the outer warm Neptune, TOI-421 c, has a period of P-c = 16.06819 +/- 0.00035 days, a mass of M-c = 16.42(-1.04)(+1.06)M(circle plus), a radius of R-c = 5.09(-0.15)(+0.16)R(circle plus), and a density of rho(c) = 0.685(-0.072)(+0.080) cm(-3). With its characteristics, the outer planet (rho(c) = 0.685(-0.0072)(+0.080) cm(-3)) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Ly alpha transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed.
|
|
|
Gill, S., Wheatley, P. J., Cooke, B. F., Jordan, A., Nielsen, L. D., Bayliss, D., et al. (2020). NGTS-11 b (TOI-1847 b): A Transiting Warm Saturn Recovered from a TESS Single-transit Event. Astrophys. J. Lett., 898(1), 6 pp.
Abstract: We report the discovery of NGTS-11 b (=TOI-1847b), a transiting Saturn in a 35.46 day orbit around a mid K-type star (T-eff = 5050 +/- 80 K). We initially identified the system from a single-transit event in a TESS full-frame image light curve. Following 79 nights of photometric monitoring with an NGTS telescope, we observed a second full transit of NGTS-11 b approximately one year after the TESS single-transit event. The NGTS transit confirmed the parameters of the transit signal and restricted the orbital period to a set of 13 discrete periods. We combined our transit detections with precise radial-velocity measurements to determine the true orbital period and measure the mass of the planet. We find NGTS-11 b has a radius of 0.817 +/-(0.028)(0.032) R-Jup, a mass of 0.344 +/-(0.092)(0.073) M-Jup, and an equilibrium temperature of just 435 +/-(34)(32) K, making it one of the coolest known transiting gas giants. NGTS-11 b is the first exoplanet to be discovered after being initially identified as a TESS single-transit event, and its discovery highlights the power of intense photometric monitoring in recovering longer-period transiting exoplanets from single-transit events.
|
|
|
Grieves, N., Bouchy, F., Ulmer-Moll, S., Gill, S., Anderson, D. R., Psaridi, A., et al. (2023). An old warm Jupiter orbiting the metal-poor G-dwarf TOI-5542. Astron. Astrophys., 668, A29.
Abstract: We report the discovery of a 1.32(-0.10)(+0.10)M(Jup) planet orbiting on a 75.12 day period around the G3V 10.8(-3.6)(+2.1) Gyr old star TOI-5542 (TIC 466206508; TYC 9086-1210-1). The planet was first detected by the Transiting Exoplanet Survey Satellite (TESS) as a single transit event in TESS Sector 13. A second transit was observed 376 days later in TESS Sector 27. The planetary nature of the object has been confirmed by ground-based spectroscopic and radial velocity observations from the CORALIE and HARPS spectrographs. A third transit event was detected by the ground-based facilities NGTS, EulerCam, and SAAO. We find the planet has a radius of 1.009(-0.035)(+0.036)R(Jup) and an insolation of 9.6(-0.8)(+0.9)S(circle plus), along with a circular orbit that most likely formed via disk migration or in situ formation, rather than high-eccentricity migration mechanisms. Our analysis of the HARPS spectra yields a host star metallicity of [Fe/H] = -0.21 +/- 0.08, which does not follow the traditional trend of high host star metallicity for giant planets and does not bolster studies suggesting a difference among low- and high-mass giant planet host star metallicities. Additionally, when analyzing a sample of 216 well-characterized giant planets, we find that both high masses (4 M-Jup < M-p < 13 M-Jup) and low masses (0.5 M-Jup < M-p < 4 M-Jup), as well as both both warm (P > 10 days) and hot (P < 10 days) giant planets are preferentially located around metal-rich stars (mean [Fe/H] > 0.1). TOI-5542b is one of the oldest known warm Jupiters and it is cool enough to be unaffected by inflation due to stellar incident flux, making it a valuable contribution in the context of planetary composition and formation studies.
|
|
|
Jenkins, J. S., Diaz, M. R., Kurtovic, N. T., Espinoza, N., Vines, J. I., Rojas, P. A. P., et al. (2020). An ultrahot Neptune in the Neptune desert. Nat. Astron., 4(12), 1148–1157.
Abstract: About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet(1,2). All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R-circle plus), or apparently rocky planets smaller than 2 R-circle plus. Such lack of planets of intermediate size (the `hot Neptune desert') has been interpreted as the inability of low-mass planets to retain any hydrogen/ helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R-circle plus and a mass of 29 M-circle plus, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite(3) revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet's mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0(-2.9)(+2.7) % of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this `ultrahot Neptune' managed to retain such an envelope. Follow-up observations of the planet's atmosphere to better understand its origin and physical nature will be facilitated by the star's brightness (V-mag = 9.8).
|
|
|
Lendl, M., Bouchy, F., Gill, S., Nielsen, L. D., Turner, O., Stassun, K., et al. (2020). TOI-222: a single-transit TESS candidate revealed to be a 34-d eclipsing binary with CORALIE, EulerCam, and NGTS. Mon. Not. Roy. Astron. Soc., 492(2), 1761–1769.
Abstract: We report the period, eccentricity, and mass determination for the Transiting Exoplanet Survey Satellite (TESS) single-transit event candidate TOI-222, which displayed a single 3000 ppm transit in the TESS 2-min cadence data from Sector 2. We determine the orbital period via radial velocity measurements (P = 33.9 d), which allowed for ground-based photometric detection of two subsequent transits. Our data show that the companion to TOI-222 is a low-mass star, with a radius of 0.18(-0.10)(+0.39) R-circle dot and a mass of 0.23 +/- 0.01 M-circle dot. This discovery showcases the ability to efficiently discover long-period systems from TESS single-transit events using a combination of radial velocity monitoring coupled with high-precision ground-based photometry.
|
|
|
Nielsen, L. D., Brahm, R., Bouchy, F., Espinoza, N., Turner, O., Rappaport, S., et al. (2020). Three short-period Jupiters from TESS: HIP 65Ab, TOI-157b, and TOI-169b. Astron. Astrophys., 639, 17 pp.
Abstract: We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI-129, TIC-201248411) is an ultra-short-period Jupiter orbiting a bright (V = 11.1 mag) K4-dwarf every 0.98 days. It is a massive 3.213 +/- 0.078 M-J planet in a grazing transit configuration with an impact parameter of b = 1.17(-0.08)(+0.10) b=1.17-0.08+0.10 . As a result the radius is poorly constrained, 2.03(-0.49)(+0.61)R(J) 2.03-0.49+0.61 RJ . The planet's distance to its host star is less than twice the separation at which it would be destroyed by Roche lobe overflow. It is expected to spiral into HIP 65A on a timescale ranging from 80 Myr to a few gigayears, assuming a reduced tidal dissipation quality factor of Q(s)(') = 10(7) – 10(9) Qs ' =107-109 . We performed a full phase-curve analysis of the TESS data and detected both illumination- and ellipsoidal variations as well as Doppler boosting. HIP 65A is part of a binary stellar system, with HIP 65B separated by 269 AU (3.95 arcsec on sky). TOI-157b (TIC 140691463) is a typical hot Jupiter with a mass of 1.18 +/- 0.13 M-J and a radius of 1.29 +/- 0.02 R-J. It has a period of 2.08 days, which corresponds to a separation of just 0.03 AU. This makes TOI-157 an interesting system, as the host star is an evolved G9 sub-giant star (V = 12.7). TOI-169b (TIC 183120439) is a bloated Jupiter orbiting a V = 12.4 G-type star. It has a mass of 0.79 +/- 0.06 M-J and a radius of 1.09(-0.05)(+0.08)R(J) 1.09-0.05+0.08<mml:msub>RJ . Despite having the longest orbital period (P = 2.26 days) of the three planets, TOI-169b receives the most irradiation and is situated on the edge of the Neptune desert. All three host stars are metal rich with [Fe / H] ranging from 0.18 to0.24.
|
|
|
Nowak, G., Palle, E., Gandolfi, D., Deeg, H. J., Hirano, T., Barragan, O., et al. (2020). K2-280 b – a low density warm sub-Saturn around a mildly evolved star. Mon. Not. Roy. Astron. Soc., 497(4), 4423–4435.
Abstract: We present an independent discovery and detailed characterization of K2-280 b, a transiting low density warm sub-Saturn in a 19.9-d moderately eccentric orbit (e = 0.35(-0.04)(+0.05)) from K2 campaign 7. A joint analysis of high precision HARPS, HARPS-N, and FIES radial velocity measurements and K2 photometric data indicates that K2-280 b has a radius of R-b = 7.50 +/- 0.44 R-circle plus and a mass of M-b = 37.1 +/- 5.6 M-circle plus, yielding a mean density of rho(b) = 0.48(-0.10)(+0.13) g cm(-3). The host star is a mildly evolved G7 star with an effective temperature of T-eff = 5500 +/- 100 K, a surface gravity of log g(star) = 4.21 +/- 0.05 (cgs), and an iron abundance of [Fe/H] = 0.33 +/- 0.08 dex, and with an inferred mass of M-star = 1.03 +/- 0.03 M-circle dot and a radius of R-star = 1.28 +/- 0.07 R-circle dot. We discuss the importance of K2-280 b for testing formation scenarios of sub-Saturn planets and the current sample of this intriguing group of planets that are absent in the Solar system.
|
|
|
Psaridi, A., Bouchy, F., Lendl, M., Akinsanmi, B., Stassun, K. G., Smalley, B., et al. (2023). Three Saturn-mass planets transiting F-type stars revealed with TESS and HARPS TOI-615b, TOI-622b, and TOI-2641b. Astron. Astrophys., 675, A39.
Abstract: While the sample of confirmed exoplanets continues to grow, the population of transiting exoplanets around early-type stars is still limited. These planets allow us to investigate the planet properties and formation pathways over a wide range of stellar masses and study the impact of high irradiation on hot Jupiters orbiting such stars. We report the discovery of TOI-615b, TOI-622b, and TOI-2641b, three Saturn-mass planets transiting main sequence, F-type stars. The planets were identified by the Transiting Exoplanet Survey Satellite (TESS) and confirmed with complementary ground-based and radial velocity observations. TOI-615b is a highly irradiated (similar to 1277 F-circle dot) and bloated Saturn-mass planet (1.69(-0.06)(+0.05) R-Jup and 0.43(-0.08)(+0.09) M-Jup) in a 4.66 day orbit transiting a 6850 K star. TOI-622b has a radius of 0.82(-0.03)(+0.03) R-Jup and a mass of 0.30(-0.08)(+0.07) M-Jup in a 6.40 day orbit. Despite its high insolation flux (similar to 600 F-circle dot), TOI-622b does not show any evidence of radius inflation. TOI-2641b is a 0.39(-0.04)(+0.02) M-Jup planet in a 4.88 day orbit with a grazing transit (b = 1.04(-0.06)(+0.05)) that results in a poorly constrained radius of 1.61(-0.64)(+0.46) R-Jup. Additionally, TOI-615b is considered attractive for atmospheric studies via transmission spectroscopy with ground-based spectrographs and JWST. Future atmospheric and spin-orbit alignment observations are essential since they can provide information on the atmospheric composition, formation, and migration of exoplanets across various stellar types.
|
|
|
Smith, A. M. S., Acton, J. S., Anderson, D. R., Armstrong, D. J., Bayliss, D., Belardi, C., et al. (2021). NGTS-14Ab: a Neptune-sized transiting planet in the desert. Astron. Astrophys., 646, A183.
Abstract: Context. The sub-Jovian, or Neptunian, desert is a previously identified region of parameter space where there is a relative dearth of intermediate-mass planets with short orbital periods.Aims. We present the discovery of a new transiting planetary system within the Neptunian desert, NGTS-14.Methods. Transits of NGTS-14Ab were discovered in photometry from the Next Generation Transit Survey (NGTS). Follow-up transit photometry was conducted from several ground-based facilities, as well as extracted from TESS full-frame images. We combine radial velocities from the HARPS spectrograph with the photometry in a global analysis to determine the system parameters.Results. NGTS-14Ab has a radius that is about 30 per cent larger than that of Neptune (0.444 +/- 0.030 R-Jup) and is around 70 per cent more massive than Neptune (0.092 +/- 0.012 M-Jup). It transits the main-sequence K1 star, NGTS-14A, with a period of 3.54 days, just far away enough to have maintained at least some of its primordial atmosphere. We have also identified a possible long-period stellar mass companion to the system, NGTS-14B, and we investigate the binarity of exoplanet host stars inside and outside the Neptunian desert using Gaia.
|
|
|
Ulmer-Moll, S., Lendl, M., Gill, S., Villanueva, S., Hobson, M. J., Bouchy, F., et al. (2022). Two long-period transiting exoplanets on eccentric orbits: NGTS-20 b (TOI-5152 b) and TOI-5153 b. Astron. Astrophys., 666, A46.
Abstract: Context. Long-period transiting planets provide the opportunity to better understand the formation and evolution of planetary systems. Their atmospheric properties remain largely unaltered by tidal or radiative effects of the host star, and their orbital arrangement reflects a different and less extreme migrational history compared to close-in objects. The sample of long-period exoplanets with well-determined masses and radii is still limited, but a growing number of long-period objects reveal themselves in the Transiting Exoplanet Survey Satellite (TESS) data.
Aims. Our goal is to vet and confirm single-transit planet candidates detected in the TESS space-based photometric data through spectroscopic and photometric follow-up observations with ground-based instruments.
Methods. We used high-resolution spectrographs to confirm the planetary nature of the transiting candidates and measure their masses. We also used the Next Generation Transit Survey (NGTS) to photometrically monitor the candidates in order to observe additional transits. Using a joint modeling of the light curves and radial velocities, we computed the orbital parameters of the system and were able to precisely measure the mass and radius of the transiting planets.
Results. We report the discovery of two massive, warm Jupiter-size planets, one orbiting the F8-type star TOI-5153 and the other orbiting the G1-type star NGTS-20 (=TOI-5152). From our spectroscopic analysis, both stars are metal rich with a metallicity of 0.12 and 0.15, respectively. Only TOI-5153 presents a second transit in the TESS extended mission data, but NGTS observed NGTS-20 as part of its mono-transit follow-up program and detected two additional transits. Follow-up high-resolution spectroscopic observations were carried out with CORALIE, CHIRON, FEROS, and HARPS. TOI-5153 hosts a planet with a period of 20.33 days, a planetary mass of 3.26(-0.17)(+0.18) Jupiter masses (M-j), a radius of 1.06(-0.04)(+0.04)R(J), and an orbital eccentricity of 0.091(-0.02)(6)(+0.024). NGTS-20 b is a 2.98(-)(0.)(15)(+0.16) M-J planet with a radius of 1.07(-0.0)(4)(+0.04) R-J on an eccentric (0.432(-0.023)(+0.023)) orbit with an orbital period of 54.19 days. Both planets are metal enriched and their heavy element content is in line with the previously reported mass-metallicity relation for gas giants.
Conclusions. Both warm Jupiters orbit moderately bright host stars, making these objects valuable targets for follow-up studies of the planetary atmosphere and measurement of the spin-orbit angle of the system.
|
|