|
Escapil-Inchauspe, P., & Jerez-Hanckes, C. (2020). Helmholtz Scattering by Random Domains: First-Order Sparse Boundary Elements Approximation. SIAM J. Sci. Comput., 42(5), A2561–A2592.
Abstract: We consider the numerical solution of time-harmonic acoustic scattering by obstacles with uncertain geometries for Dirichlet, Neumann, impedance, and transmission boundary conditions. In particular, we aim to quantify diffracted fields originated by small stochastic perturbations of a given relatively smooth nominal shape. Using first-order shape Taylor expansions, we derive tensor deterministic first-kind boundary integral equations for the statistical moments of the scattering problems considered. These are then approximated by sparse tensor Galerkin discretizations via the combination technique [M. Griebel, M. Schneider, and C. Zenger, A combination technique for the solution of sparse grid problems, in Iterative Methods in Linear Algebra, P. de Groen and P. Beauwens, eds., Elsevier, Amsterdam, 1992, pp. 263-281; H. Harbrecht, M. Peters, and M. Siebenmorgen, J. Comput. Phys., 252 (2013), pp. 128-141]. We supply extensive numerical experiments confirming the predicted error convergence rates with polylogarithmic growth in the number of degrees of freedom and accuracy in approximation of the moments. Moreover, we discuss implementation details such as preconditioning to finally point out further research avenues.
|
|
|
Escapil-Inchauspe, P., & Jerez-Hanckes, C. (2021). Bi-parametric operator preconditioning. Comput. Math. Appl., 102, 220–232.
Abstract: We extend the operator preconditioning framework Hiptmair (2006) [10] to Petrov-Galerkin methods while accounting for parameter-dependent perturbations of both variational forms and their preconditioners, as occurs when performing numerical approximations. By considering different perturbation parameters for the original form and its preconditioner, our bi-parametric abstract setting leads to robust and controlled schemes. For Hilbert spaces, we derive exhaustive linear and super-linear convergence estimates for iterative solvers, such as h-independent convergence bounds, when preconditioning with low-accuracy or, equivalently, with highly compressed approximations.
|
|
|
Escapil-Inchauspe, P., & Ruz, G. A. (2023). h-Analysis and data-parallel physics-informed neural networks. Sci. Rep., 13(1), 17562.
Abstract: We explore the data-parallel acceleration of physics-informed machine learning (PIML) schemes, with a focus on physics-informed neural networks (PINNs) for multiple graphics processing units (GPUs) architectures. In order to develop scale-robust and high-throughput PIML models for sophisticated applications which may require a large number of training points (e.g., involving complex and high-dimensional domains, non-linear operators or multi-physics), we detail a novel protocol based on h-analysis and data-parallel acceleration through the Horovod training framework. The protocol is backed by new convergence bounds for the generalization error and the train-test gap. We show that the acceleration is straightforward to implement, does not compromise training, and proves to be highly efficient and controllable, paving the way towards generic scale-robust PIML. Extensive numerical experiments with increasing complexity illustrate its robustness and consistency, offering a wide range of possibilities for real-world simulations.
|
|
|
Kleanthous, A., Betcke, T., Hewett, D. P., Escapil-Inchauspe, P., Jerez-Hanckes, C., & Baran, A. J. (2022). Accelerated Calderon preconditioning for Maxwell transmission problems. J. Comput. Phys., 458, 111099.
Abstract: We investigate a range of techniques for the acceleration of Calderon (operator) preconditioning in the context of boundary integral equation methods for electromagnetic transmission problems. Our objective is to mitigate as far as possible the high computational cost of the barycentrically-refined meshes necessary for the stable discretisation of operator products. Our focus is on the well-known PMCHWT formulation, but the techniques we introduce can be applied generically. By using barycentric meshes only for the preconditioner and not for the original boundary integral operator, we achieve significant reductions in computational cost by (i) using “reduced” Calderon preconditioners obtained by discarding constituent boundary integral operators that are not essential for regularisation, and (ii) adopting a “bi-parametric” approach [1,2] in which we use a lower quality (cheaper) H-matrix assembly routine for the preconditioner than for the original operator, including a novel approach of discarding far-field interactions in the preconditioner. Using the boundary element software Bempp (www.bempp.com), we compare the performance of different combinations of these techniques in the context of scattering by multiple dielectric particles. Applying our accelerated implementation to 3D electromagnetic scattering by an aggregate consisting of 8 monomer ice crystals of overall diameter 1cm at 664GHz leads to a 99% reduction in memory cost and at least a 75% reduction in total computation time compared to a non-accelerated implementation. Crown Copyright (C) 2022 Published by Elsevier Inc. All rights reserved.
|
|