Morales-Bader, D., Castillo, R. D., Cox, R. F. A., & Ascencio-Garrido, C. (2023). Parliamentary roll-call voting as a complex dynamical system: The case of Chile. PLoS One, 18(4).
Abstract: A method is proposed to study the temporal variability of legislative roll-call votes in a parliament from the perspective of complex dynamical systems. We studied the Chilean Chamber of Deputies' by analyzing the agreement ratio and the voting outcome of each vote over the last 19 years with a Recurrence Quantification Analysis and an entropy analysis (Sample Entropy). Two significant changes in the temporal variability were found: one in 2014, where the voting outcome became more recurrent and with less entropy, and another in 2018, where the agreement ratio became less recurrent and with higher entropy. These changes may be directly related to major changes in the Chilean electoral system and the composition of the Chamber of Deputies, given that these changes occurred just after the first parliamentary elections with non-compulsory voting (2013 elections) and the first elections with a proportional system in conjunction with an increase in the number of deputies (2017 elections) were held.
|
Peters, A. A., Vargas, F. J., Garrido, C., Andrade, C., & Villenas, F. (2021). PL-TOON: A Low-Cost Experimental Platform for Teaching and Research on Decentralized Cooperative Control. Sensors, 21(6), 2072.
Abstract: In this paper, we present the development of a low-cost multi-agent system experimental platform for teaching, and research purposes. The platform consists of train-like autonomous agents equipped with local speed estimation, distance sensing to their nearest predecessor, and wireless communications with other agents and a central coordinator. The individual agents can be used for simple PID experiments in a classroom or laboratory setting, while a collection of agents are capable of performing decentralized platooning with cooperative adaptive cruise control in a variety of settings, the latter being the main goal of the platform. The agents are built from low cost components and programmed with open source software, enabling teaching experiences and experimental work with a larger number of agents that would otherwise be possible with other existing solutions. Additionally, we illustrate with experimental results some of the teaching activities that the platform is capable of performing.
|