Home | << 1 >> |
![]() |
Rodriguez, J. E., Quinn, S. N., Zhou, G., Vanderburg, A., Nielsen, L. D., Wittenmyer, R. A., et al. (2021). TESS Delivers Five New Hot Giant Planets Orbiting Bright Stars from the Full-frame Images. Astron. J., 161(4), 194.
Abstract: We present the discovery and characterization of five hot and warm Jupiters-TOI-628 b (TIC 281408474; HD 288842), TOI-640 b (TIC 147977348), TOI-1333 b (TIC 395171208, BD+47 3521A), TOI-1478 b (TIC 409794137), and TOI-1601 b ( TIC 139375960)-based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The five planets were identified from the full-frame images and were confirmed through a series of photometric and spectroscopic follow-up observations by the TESS Follow-up Observing Program Working Group. The planets are all Jovian size (R-P = 1.01-1.77 R-J) and have masses that range from 0.85 to 6.33 M-J. The host stars of these systems have F and G spectral types (5595 <= T-eff <= 6460 K) and are all relatively bright (9.5 < V < 10.8, 8.2 < K < 9.3), making them well suited for future detailed characterization efforts. Three of the systems in our sample (TOI-640 b, TOI-1333 b, and TOI-1601 b) orbit subgiant host stars (log g < 4.1). TOI-640 b is one of only three known hot Jupiters to have a highly inflated radius (R-P > 1.7 R-J, possibly a result of its host star's evolution) and resides on an orbit with a period longer than 5 days. TOI-628 b is the most massive, hot Jupiter discovered to date by TESS with a measured mass of 6.31(-0.30)(+) (0.28) M-J and a statistically significant, nonzero orbital eccentricity of e = 0.074(-0.022)(+) (0.021). This planet would not have had enough time to circularize through tidal forces from our analysis, suggesting that it might be remnant eccentricity from its migration. The longest-period planet in this sample, TOI-1478 b (P = 10.18 days), is a warm Jupiter in a circular orbit around a near-solar analog. NASA's TESS mission is continuing to increase the sample of well-characterized hot and warm Jupiters, complementing its primary mission goals.
|
Yee, S. W., Winn, J. N., Hartman, J. D., Rodriguez, J. E., Zhou, G., Quinn, S. N., et al. (2022). The TESS Grand Unified Hot Jupiter Survey. I. Ten TESS Planets. Astron. J., 164(2), 70.
Abstract: Hot Jupiters-short-period giant planets-were the first extrasolar planets to be discovered, but many questions about their origin remain. NASA's Transiting Exoplanet Survey Satellite (TESS), an all-sky search for transiting planets, presents an opportunity to address these questions by constructing a uniform sample of hot Jupiters for demographic study through new detections and unifying the work of previous ground-based transit surveys. As the first results of an effort to build this large sample of planets, we report here the discovery of 10 new hot Jupiters (TOI-2193A b, TOI-2207b, TOI-2236b, TOI-2421b, TOI-2567b, TOI-2570b, TOI-3331b, TOI-3540A b, TOI-3693b, TOI-4137b). All of the planets were identified as planet candidates based on periodic flux dips observed by TESS, and were subsequently confirmed using ground-based time-series photometry, high-angular-resolution imaging, and high-resolution spectroscopy coordinated with the TESS Follow-up Observing Program. The 10 newly discovered planets orbit relatively bright F and G stars (G < 12.5, T (eff) between 4800 and 6200 K). The planets' orbital periods range from 2 to 10 days, and their masses range from 0.2 to 2.2 Jupiter masses. TOI-2421b is notable for being a Saturn-mass planet and TOI-2567b for being a “sub-Saturn,” with masses of 0.322 +/- 0.073 and 0.195 +/- 0.030 Jupiter masses, respectively. We also measured a detectably eccentric orbit (e = 0.17 +/- 0.05) for TOI-2207b, a planet on an 8 day orbit, while placing an upper limit of e < 0.052 for TOI-3693b, which has a 9 day orbital period. The 10 planets described here represent an important step toward using TESS to create a large and statistically useful sample of hot Jupiters.
Keywords: GIANT PLANETS; K-DWARF; TRANSITING PLANETS; ERROR-CORRECTION; LIGHT CURVES; STARS; SOLAR; SEARCH; TELESCOPE; PROJECT
|