Lavin, P., Henriquez-Castillo, C., Yong, S. T., Valenzuela-Heredia, D., Oses, R., Frez, K., et al. (2021). Draft Genome Sequence of Antarctic Psychrotroph Streptomyces fildesensis Strain INACH3013, Isolated from King George Island Soil. Microbiol. Resour. Ann., 10(5), e01453–20.
Abstract: The draft genome sequence of Streptomyces fildesensis strain INACH3013, a psychrotrophic bacterium isolated from Northwest Antarctic soil, was reported. The genome sequence totaling 9,306,785 bp resulted from 122 contigs characterized by a GC content of 70.55%.
|
Plominsky, A. M., Henriquez-Castillo, C., Delherbe, N., Podell, S., Ramirez-Flandes, S., Ugalde, J. A., et al. (2018). Distinctive Archaeal Composition of an Artisanal Crystallizer Pond and Functional Insights Into Salt-Saturated Hypersaline Environment Adaptation. Front. Microbiol., 9, 13 pp.
Abstract: Hypersaline environments represent some of the most challenging settings for life on Earth. Extremely halophilic microorganisms have been selected to colonize and thrive in these extreme environments by virtue of a broad spectrum of adaptations to counter high salinity and osmotic stress. Although there is substantial data on microbial taxonomic diversity in these challenging ecosystems and their primary osmoadaptation mechanisms, less is known about how hypersaline environments shape the genomes of microbial inhabitants at the functional level. In this study, we analyzed the microbial communities in five ponds along the discontinuous salinity gradient from brackish to salt-saturated environments and sequenced the metagenome of the salt (halite) precipitation pond in the artisanal Cahuil Solar Saltern system. We combined field measurements with spectrophotometric pigment analysis and flow cytometry to characterize the microbial ecology of the pond ecosystems, including primary producers and applied metagenomic sequencing for analysis of archaeal and bacterial taxonomic diversity of the salt crystallizer harvest pond. Comparative metagenomic analysis of the Cahuil salt crystallizer pond against microbial communities from other salt-saturated aquatic environments revealed a dominance of the archaeal genus Halorubrum and showed an unexpectedly low abundance of Haloquadratum in the Cahuil system. Functional comparison of 26 hypersaline microbial metagenomes revealed a high proportion of sequences associated with nucleotide excision repair, helicases, replication and restriction-methylation systems in all of them. Moreover, we found distinctive functional signatures between the microbial communities from salt-saturated (>30% [w/v] total salinity) compared to sub-saturated hypersaline environments mainly due to a higher representation of sequences related to replication, recombination and DNA repair in the former. The current study expands our understanding of the diversity and distribution of halophilic microbial populations inhabiting salt-saturated habitats and the functional attributes that sustain them.
|
Valenzuela-Heredia, D., Henriquez-Castillo, C., Donoso, R., Lavin, P., Pavlov, M. S., Franchi, O., et al. (2020). Complete Genome Sequence of Pseudomonas chilensis Strain ABC1, Isolated from Soil. Microbiol. Resour. Ann., 9(39), 2 pp.
Abstract: Here, we report the complete genome sequence of Pseudomonas chilensis strain ABC1, which was isolated from a soil interstitial water sample collected at the University Adolfo Ibanez, Valparaiso, Chile. We assembled PacBio reads into a single closed contig with 209x mean coverage, yielding a 4,035,896-bp sequence with 62% GC content and 3,555 predicted genes.
|
Valenzuela-Heredia, D., Henriquez-Castillo, C., Donoso, R., Lavin, P., Ulloa, O., Ringel, M. T., et al. (2021). An unusual overrepresentation of genetic factors related to iron homeostasis in the genome of the fluorescent Pseudomonas sp. ABC1. Microb. Biotechnol., 14(3), 1060–1072.
Abstract: Members of the genus Pseudomonas inhabit diverse environments, such as soil, water, plants and humans. The variability of habitats is reflected in the diversity of the structure and composition of their genomes. This cosmopolitan bacterial genus includes species of biotechnological, medical and environmental importance. In this study, we report on the most relevant genomic characteristics of Pseudomonas sp. strain ABC1, a siderophore-producing fluorescent strain recently isolated from soil. Phylogenomic analyses revealed that this strain corresponds to a novel species forming a sister clade of the recently proposed Pseudomonas kirkiae. The genomic information reveals an overrepresented repertoire of mechanisms to hoard iron when compared to related strains, including a high representation of fecI-fecR family genes related to iron regulation and acquisition. The genome of the Pseudomonas sp. ABC1 contains the genes for non-ribosomal peptide synthetases (NRPSs) of a novel putative Azotobacter-related pyoverdine-type siderophore, a yersiniabactin-type siderophore and an antimicrobial betalactone; the last two are found only in a limited number of Pseudomonas genomes. Strain ABC1 can produce siderophores in a low-cost medium, and the supernatants from cultures of this strain promote plant growth, highlighting their biotechnological potential as a sustainable industrial microorganism.
|