|
Guzman, D., Garcia, C., Soliz, A., Sepulveda, R., Aguilar, C., Rojas, P., et al. (2018). Synthesis and Electrochemical Properties of Ti-Si Alloys Prepared by Mechanical Alloying and Heat Treatment. Metals, 8(6), 417.
Abstract: The aim of this work was to study the synthesis and electrochemical properties of Ti 2 wt %-Si alloys prepared by mechanical alloying (MA) and heat treatment. The MA process was performed under Ar atmosphere. The structural, morphological, and compositional evolutions during the milling and subsequent heat treatment were investigated by X-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy. The electrochemical behavior was evaluated by open circuit potential and linear sweep voltammetry measurements. The results showed that the MA process promotes the formation of a supersaturated alpha-Ti-Si solid solution. During heat treatment, the Si remaining in the mechanically alloyed powders and the Si from the alpha-Ti-Si supersaturated solid solution reacted with Ti to form Ti-Si intermetallic compounds. These compounds have a fine and homogeneous distribution in the alpha-Ti matrix, which cannot be achieved by conventional casting methods. Additionally, the electrochemical evaluations revealed that the mechanically alloyed and heat-treated Ti 2 wt %-Si powders have better corrosion resistance in 1.63 M H2SO4 than the pure Ti and MA Ti-Si samples. This is likely due to the particular microstructure produced during the milling and subsequent heat treatment.
|
|
|
Martinez, C., Briones, F., Aguilar, C., Araya, N., Iturriza, I., Machado, I., et al. (2020). Effect of hot pressing and hot isostatic pressing on the microstructure, hardness, and wear behavior of nickel. Mater. Lett., 273, 127944.
Abstract: Nanocrystalline Ni (Ni-nc) obtained by mechanical milling may present improved mechanical properties paired with high abrasion resistance. Different sintering processes were used to consolidate Nanocrystaline Ni: hot pressed (HP) and hot-isostatic pressed (HIP). The microstructure, mechanical properties, and tribological were evaluated to compare the processes. X-ray diffraction patterns showed that HIP-consolidated specimens had larger crystallite sizes and 37% less microstrain when compared to the HP specimens. The nanohardness of the HIP specimens was also carried out and it was 50% lower than that of HP specimens, whereas its coefficient of friction found was 25% higher. These results show the advantages of the HP process over the HIP since the high pressure. The low sintering temperature of HP inhibited the grain growth, which leads excellent mechanical and tribological properties of Ni. (C) 2020 Elsevier B.V. All rights reserved.
|
|