Jerez, D. J., Jensen, H. A., Valdebenito, M. A., Misraji, M. A., Mayorga, F., & Beer, M. (2022). On the use of Directional Importance Sampling for reliability-based design and optimum design sensitivity of linear stochastic structures. Probabilistic Eng. Mech., 70, 103368.
Abstract: This contribution focuses on reliability-based design and optimum design sensitivity of linear dynamical structural systems subject to Gaussian excitation. Directional Importance Sampling (DIS) is implemented for reliability assessment, which allows to obtain first-order derivatives of the failure probabilities as a byproduct of the sampling process. Thus, gradient-based solution schemes can be adopted by virtue of this feature. In particular, a class of feasible-direction interior point algorithms are implemented to obtain optimum designs, while a direction-finding approach is considered to obtain optimum design sensitivity measures as a post -processing step of the optimization results. To show the usefulness of the approach, an example involving a building structure is studied. Overall, the reliability sensitivity analysis framework enabled by DIS provides a potentially useful tool to address a practical class of design optimization problems.
|
Valdebenito, M. A., Misraji, M. A., Jensen, H. A., & Mayorga, C. F. (2021). Sensitivity estimation of first excursion probabilities of linear structures subject to stochastic Gaussian loading. Comput. Struct., 248, 106482.
Abstract: This contribution focuses on evaluating the sensitivity associated with first excursion probabilities of linear structural systems subject to stochastic Gaussian loading. The sensitivity measure considered is the partial derivative of the probability with respect to parameters that affect the structural response, such as dimensions of structural elements. The actual calculation of the sensitivity demands solving high dimensional integrals over hypersurfaces, which can be challenging from a numerical viewpoint. Hence, sensitivity evaluation is cast within the context of a reliability analysis that is conducted with Directional Importance Sampling. In this way, the sought sensitivity is obtained as a byproduct of the calculation of the failure probability, where the post-processing step demands performing a sensitivity analysis of the unit impulse response functions of the structure. Thus, the sensitivity is calculated using sampling by means of an estimator, whose precision can be quantified in terms of its standard deviation. Numerical examples involving both small- and large-scale structural models illustrate the procedure for probability sensitivity estimation. (C) 2021 Elsevier Ltd. All rights reserved.
|
Yuan, X. K., Liu, S. L., Valdebenito, M. A., Faes, M. G. R., Jerez, D. J., Jensen, H. A., et al. (2021). Decoupled reliability-based optimization using Markov chain Monte Carlo in augmented space. Adv. Eng. Softw., 157, 103020.
Abstract: An efficient framework is proposed for reliability-based design optimization (RBDO) of structural systems. The RBDO problem is expressed in terms of the minimization of the failure probability with respect to design variables which correspond to distribution parameters of random variables, e.g. mean or standard deviation. Generally, this problem is quite demanding from a computational viewpoint, as repeated reliability analyses are involved. Hence, in this contribution, an efficient framework for solving a class of RBDO problems without even a single reliability analysis is proposed. It makes full use of an established functional relationship between the probability of failure and the distribution design parameters, which is termed as the failure probability function (FPF). By introducing an instrumental variability associated with the distribution design parameters, the target FPF is found to be proportional to a posterior distribution of the design parameters conditional on the occurrence of failure in an augmented space. This posterior distribution is derived and expressed as an integral, which can be estimated through simulation. An advanced Markov chain algorithm is adopted to efficiently generate samples that follow the aforementioned posterior distribution. Also, an algorithm that re-uses information is proposed in combination with sequential approximate optimization to improve the efficiency. Numeric examples illustrate the performance of the proposed framework.
|