toggle visibility Search & Display Options

Select All    Deselect All
 | 
Citations
 | 
   print
Ayala, A., Claeys, X., Escapil-Inchauspé, P., & Jerez-Hanckes, C. (2022). Local Multiple Traces Formulation for electromagnetics: Stability and preconditioning for smooth geometries. J. Comput. Appl. Math., 413, 114356.
toggle visibility
Aylwin, R., & Jerez-Hanckes, C. (2021). The effect of quadrature rules on finite element solutions of Maxwell variational problems Consistency estimates on meshes with straight and curved elements. Numer. Math., 147, 903–936.
toggle visibility
Aylwin, R., & Jerez-Hanckes, C. (2023). Finite-Element Domain Approximation for Maxwell Variational Problems on Curved Domains. SIAM J. Numer. Anal., 61(3), 1139–1171.
toggle visibility
Aylwin, R., Jerez-Hanckes, C., & Pinto, J. (2020). On the Properties of Quasi-periodic Boundary Integral Operators for the Helmholtz Equation. Integr. Equ. Oper. Theory, 92(2), 41 pp.
toggle visibility
Aylwin, R., Jerez-Hanckes, C., Schwab, C., & Zech, J. (2020). Domain Uncertainty Quantification in Computational Electromagnetics. SIAM-ASA J. Uncertain. Quantif., 8(1), 301–341.
toggle visibility
Aylwin, R., Jerez-Hanckes, C., Schwab, C., & Zech, J. (2023). Multilevel Domain Uncertainty Quantification in Computational Electromagnetics. Math. Models Methods Appl. Sci., 33(04), 877–921.
toggle visibility
Aylwin, R., Silva-Oelker, G., Jerez-Hanckes, C., & Fay, P. (2020). Optimization methods for achieving high diffraction efficiency with perfect electric conducting gratings. J. Opt. Soc. Am. A-Opt. Image Sci. Vis., 37(8), 1316–1326.
toggle visibility
Dölz, J., Harbrecht, H., Jerez-Hanckes, C., & Multerer M. (2022). Isogeometric multilevel quadrature for forward and inverse random acoustic scattering. Comput. Methods in Appl. Mech. Eng., 388, 114242.
toggle visibility
Escapil-Inchauspe, P., & Jerez-Hanckes, C. (2020). Helmholtz Scattering by Random Domains: First-Order Sparse Boundary Elements Approximation. SIAM J. Sci. Comput., 42(5), A2561–A2592.
toggle visibility
Escapil-Inchauspe, P., & Jerez-Hanckes, C. (2021). Bi-parametric operator preconditioning. Comput. Math. Appl., 102, 220–232.
toggle visibility
Fierro, I., & Jerez-Hanckes, C. (2020). Fast Calderon preconditioning for Helmholtz boundary integral equations. J. Comput. Phys., 409, 22 pp.
toggle visibility
Fuenzalida, C., Jerez-Hanckes, C., & McClarren, R. G. (2019). Uncertainty Quantification For Multigroup Diffusion Equations Using Sparse Tensor Approximations. SIAM J. Sci. Comput., 41(3), B545–B575.
toggle visibility
Hiptmair, R., Jerez-Hanckes, C., & Urzúa-Torres, C. (2020). Optimal Operator Preconditioning For Galerkin Boundary Element Methods On 3D Screens. SIAM J. Numer. Anal., 58(1), 834–857.
toggle visibility
Jerez-Hanckes, C., & Labarca, I. (2023). Time-domain multiple traces boundary integral formulation for acoustic wave scattering in 2D. Eng. Anal. Bound. Elem., 157, 216–228.
toggle visibility
Jerez-Hanckes, C., & Pinto, J. (2020). High-order Galerkin method for Helmholtz and Laplace problems on multiple open arcs. ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer., 54(6), 1975–2009.
toggle visibility
Jerez-Hanckes, C., & Pinto, J. (2020). Spectral Galerkin Method for Solving Helmholtz and Laplace Dirichlet Problems on Multiple Open Arcs. In Lecture Notes in Computational Science and Engineering (Vol. 134, pp. 383–393).
toggle visibility
Jerez-Hanckes, C., & Pinto, J. (2022). Spectral Galerkin Method for Solving Helmholtz Boundary Integral Equations on Smooth Screens. IMA J. Numer. Anal., 42(4), 3571–3608.
toggle visibility
Jerez-Hanckes, C., Martínez, I. A., Pettersson, I., & Rybalko, V. (2023). Derivation of a bidomain model for bundles of myelinated axons. Nonlinear Anal.-Real World Appl., 70, 103789.
toggle visibility
Jerez-Hanckes, C., Martínez, I. A., Pettersson, I., & Volodymyr, R. (2021). Multiscale Analysis of Myelinated Axons. In SEMA SIMAI Springer Series (Vol. 10, pp. 17–35). Springer, Cham.
toggle visibility
Jerez-Hanckes, C., Pettersson, I., & Rybalko, V. (2020). Derivation Of Cable Equation By Multiscale Analysis For A Model Of Myelinated Axons. Discrete Contin. Dyn. Syst.-Ser. B, 25(3), 815–839.
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print