|
Aguilera, V. M., Vargas, C. A., Lardies, M. A., & Poupin, M. J. (2016). Adaptive variability to low-pH river discharges in Acartia tonsa and stress responses to high PCO2 conditions. Mar. Ecol.-Evol. Persp., 37(1), 215–226.
Abstract: Environmental transitions leading to spatial physical-chemical gradients are of ecological and evolutionary interest because they are able to induce variations in phenotypic plasticity. Thus, the adaptive variability to low-pH river discharges may drive divergent stress responses [ingestion rates (IR) and expression of stress-related genes such as Heat shock protein 70 (Hsp70) and Ferritin] in the neritic copepod Acartia tonsa facing changes in the marine chemistry associated to ocean acidification (OA). These responses were tested in copepod populations inhabiting two environments with contrasting carbonate system parameters (an estuarine versus coastal area) in the Southern Pacific Ocean, and assessing an insitu and 96-h experimental incubation under conditions of high pressure of CO2 (PCO2 1200ppm). Adaptive variability was a determining factor in driving variability of copepods' responses. Thus, the food-rich but colder and corrosive estuary induced a traits trade-off expressed as depressed IR under insitu conditions. However, this experience allowed these copepods to tolerate further exposure to high PCO2 levels better, as their IRs were on average 43% higher thanthose of the coastal individuals. Indeed, expression of both the Hsp70 and Ferritin genes in coastal copepods was significantly higher after acclimation to high PCO2 conditions. Along with other recent evidence, our findings confirm that adaptation to local fluctuations in seawater pH seems to play a significant role in the response of planktonic populations to OA-associated conditions. Facing the environmental threat represented by the inter-play between multiple drivers of climate change, this biological feature should be examined in detail asa potential tool for risk mitigation policies in coastal management arrangements.
|
|
|
Arias, M. B., Poupin, M. J., & Lardies, M. A. (2011). Plasticity of life-cycle, physiological thermal traits and Hsp70 gene expression in an insect along the ontogeny: Effect of temperature variability. J. Therm. Biol., 36(6), 355–362.
Abstract: It is considered that extreme environmental temperature, rather than mean temperatures exert a selective pressure in ectotherms. Consequently, it is important to understand how the predicted increase in temperature variance with a higher frequency of extreme events in climate change is likely to impact on organisms. Thermal tolerance traits (i.e. chill-coma, recovery time, Hsp70 expression) are directly linked with performance in ectotherms and have consequences in life-history traits. We examined the effects of temperature variability on thermal tolerance and life-history traits through ontogeny of an insect with a complex life-cycle: the yellow mealworm beetle Tenebrio molitor. We established two common gardens with 100 recently ovoposited eggs each. Larvae were reared from hatching to adult on either a variable (mean=18 degrees C and a variance of 6.8 degrees C) or constant (18 +/- 1 degrees C) thermal environment. Development rate and growth rate were similar between thermal environments. Results indicate that larvae reared in a variable environment are more cold-tolerant than larvae of a constant environment. Interestingly, these results are reversed in the adult stage, outlining an inter-stage physiological cost. Gene expression pattern of an Hsp70 gene was well correlated with larval thermotolerance to cold in the variable environment but higher gene expression in adults is not correlated with individual's thermotolerance. We conclude that chill-coma, recovery time and Hsp70 gene expression are plastic in response to a thermal environment but also change significantly their responses depending on the ontogenetic stage, implying that the response of adult individuals is linked to early stages of the life-cycle. (C) 2011 Elsevier Ltd. All rights reserved,
|
|
|
Barria, A. M., Lardies, M. A., Beckerman, A. P., & Bacigalupe, L. D. (2014). Latitude or biogeographic breaks? Determinants of phenotypic (co)variation in fitness-related traits in Betaeus truncatus along the Chilean coast. Mar. Biol., 161(1), 111–118.
Abstract: Ectothermal organisms distributed along environmental gradients in a wide geographical distribution display extensive phenotypic variation. This is particularly pervasive along latitudinal clines, which are linked to gradual changes in environmental factors. Widespread species may also be distributed among biogeographic breaks, which in contrast to smooth clines, often show abrupt changes in phenotypic traits. In species with widespread latitudinal distribution that also encompass important biogeographical breaks, it is not clear which of those factors prevails on shaping the phenotypic variation or if some traits are particularly more sensitive to one or the other. To evaluate this, we measured 4 fitness-related traits in 6 populations of the intertidal snapping shrimp Betaeus truncatus, as its distribution along Chile expands over 40A degrees in latitude and three major biogeographical provinces. Here, we statistically evaluated the role of both, latitude and biogeographic breaks, on mean population values of fitness-related traits but also on the variances and covariances (i.e., P-matrix) between them. Overall, our results (1) indicate that latitude is more important than breaks in shaping the phenotypic variation of most of these fitness-related traits, (2) show that the differences in the variance-covariance relationship among traits between the extremes of the gradient arises from gradual increases in variance and rather sharp changes in covariance at mid-latitudes and (3) show that at present, it is difficult to unambiguously determine whether natural selection or plasticity is responsible for the observed pattern in means, variances and covariances and only further work might disentangle these possibilities.
|
|
|
Benitez, S., Duarte, C., Opitz, T., Lagos, N. A., Pulgar, J. M., Vargas, C. A., et al. (2017). Intertidal pool fish Girella laevifrons (Kyphosidae) shown strong physiological homeostasis but shy personality: The cost of living in hypercapnic habitats. Mar. Pollut. Bull., 118(1-2), 57–63.
Abstract: Tide pools habitats are naturally exposed to a high degree of environmental variability. The consequences of living in these extreme habitats are not well established. In particular, little it is known about of the effects of hypercanic seawater (i.e. high pCO(2) levels) on marine vertebrates such as intertidal pool fish. The aim of this study was to evaluate the effects of increased pCO(2) on the physiology and behavior in juveniles of the intertidal pool fish Girella laevifrons. Two nominal pCO(2) concentrations (400 and 1600 patm) were used. We found that exposure to hypercapnic conditions did not affect oxygen consumption and absorption efficiency. However, the lateralization and boldness behavior was significantly disrupted in high pCO(2) conditions. In general, a predator-risk cost of boldness is assumed, thus the increased occurrence of shy personality in juvenile fishes may result in a change in the balance of this biological interaction, with significant ecological consequences. (C) 2017 Elsevier Ltd. All rights reserved.
|
|
|
Gaitan-Espitia, J. D., Arias, M. B., Lardies, M. A., & Nespolo, R. F. (2013). Variation in Thermal Sensitivity and Thermal Tolerances in an Invasive Species across a Climatic Gradient: Lessons from the Land Snail Cornu aspersum. PLoS One, 8(8).
Abstract: The ability of organisms to perform at different temperatures could be described by a continuous nonlinear reaction norm (i.e., thermal performance curve, TPC), in which the phenotypic trait value varies as a function of temperature. Almost any shift in the parameters of this performance curve could highlight the direct effect of temperature on organism fitness, providing a powerful framework for testing thermal adaptation hypotheses. Inter-and intraspecific differences in this performance curve are also reflected in thermal tolerances limits (e. g., critical and lethal limits), influencing the biogeographic patterns of species' distribution. Within this context, here we investigated the intraspecific variation in thermal sensitivities and thermal tolerances in three populations of the invasive snail Cornu aspersum across a geographical gradient, characterized by different climatic conditions. Thus, we examined population differentiation in the TPCs, thermal-coma recovery times, expression of heat-shock proteins and standard metabolic rate (i.e., energetic costs of physiological differentiation). We tested two competing hypotheses regarding thermal adaptation (the “hotter is better” and the generalist-specialist trade-offs). Our results show that the differences in thermal sensitivity among populations of C. aspersum follow a latitudinal pattern, which is likely the result of a combination of thermodynamic constraints (“hotter is better”) and thermal adaptations to their local environments (generalist-specialist trade-offs). This finding is also consistent with some thermal tolerance indices such as the Heat-Shock Protein Response and the recovery time from chill-coma. However, mixed responses in the evaluated traits suggest that thermal adaptation in this species is not complete, as we were not able to detect any differences in neither energetic costs of physiological differentiation among populations, nor in the heat-coma recovery.
|
|
|
Gaitan-Espitia, J. D., Bacigalupe, L. D., Opitz, T., Lagos, N. A., Timmermann, T., & Lardies, M. A. (2014). Geographic variation in thermal physiological performance of the intertidal crab Petrolisthes violaceus along a latitudinal gradient. J. Exp. Biol., 217(24), 4379–4386.
Abstract: Environmental temperature has profound effects on the biological performance and biogeographical distribution of ectothermic species. Variation of this abiotic factor across geographic gradients is expected to produce physiological differentiation and local adaptation of natural populations depending on their thermal tolerances and physiological sensitivities. Here, we studied geographic variation in whole-organism thermal physiology of seven populations of the porcelain crab Petrolisthes violaceus across a latitudinal gradient of 3000 km, characterized by a cline of thermal conditions. Our study found that populations of P. violaceus show no differences in the limits of their thermal performance curves and demonstrate a negative correlation of their optimal temperatures with latitude. Additionally, our findings show that high-latitude populations of P. violaceus exhibit broader thermal tolerances, which is consistent with the climatic variability hypothesis. Interestingly, under a future scenario of warming oceans, the thermal safety margins of P. violaceus indicate that lower latitude populations can physiologically tolerate the ocean-warming scenarios projected by the IPCC for the end of the twenty-first century.
|
|
|
Garcia-Huidobro, M. R., Poupin, M. J., Urrutia, C., Rodriguez-Navarro, A. B., Grenier, C., Vivanco, J. F., et al. (2021). An intrapopulational study of organic compounds and biomechanical properties of the shell of the Antarctic bivalve Laternula elliptica (P. P. King, 1832) at King George Island. Polar Biol., 44, 1343–1352.
Abstract: Laternula elliptica is a key bivalve species and widely distributed around the Antarctic continent. This bivalve has been the study subject in several studies centered on ecological, physiological, biochemical, and behavioral patterns. However, little is known about the chemistry and the biomechanical properties of the shells of this mollusk. Here, we present the first report of the intra-population variability in the organic composition and mechanical properties of L. elliptica shells. Further, we analyze different morphological traits and their association with the metabolism of a population of L. elliptica from King George Island, Western Antarctic Peninsula. The summer metabolic rates and the hepatosomatic index values indicate good health conditions of this clam's population. Shell periostracum chemistry is quite similar to bivalves from temperate regions, but the relative amount of protein increased ca. five-fold in shells of L. elliptica. The microhardness is approximately 32% lower than in bivalves from temperate regions. Our characterization of the L. elliptica shells suggests that periostracum chemistry could be specially fitted to avoid shell carbon exposure to dissolution (e.g., in corrosive acidified seawater). In contrast, the reduction in shell hardness may result from prioritizing behavioral (burial) and shell repairing strategies to confront biological (predators) and physical disturbances (e.g., ice scouring). Similar studies in other Antarctic mollusks will help understand the role of shell structure and function in confronting projected climate changes in the Antarctic ocean.
|
|
|
Goles, E., Slapnicar, I., & Lardies, M. A. (2021). Universal Evolutionary Model for Periodical Species. Complexity, 2021, 2976351.
Abstract: Real-world examples of periodical species range from cicadas, whose life cycles are large prime numbers, like 13 or 17, to bamboos, whose periods are large multiples of small primes, like 40 or even 120. The periodicity is caused by interaction of species, be it a predator-prey relationship, symbiosis, commensalism, or competition exclusion principle. We propose a simple mathematical model, which explains and models all those principles, including listed extremal cases. This rather universal, qualitative model is based on the concept of a local fitness function, where a randomly chosen new period is selected if the value of the global fitness function of the species increases. Arithmetically speaking, the different interactions are related to only four principles: given a couple of integer periods either (1) their greatest common divisor is one, (2) one of the periods is prime, (3) both periods are equal, or (4) one period is an integer multiple of the other.
|
|
|
Labra, F. A., San Martin, V. A., Jahnsen-Guzman, N., Fernandez, C., Zapata, J., Garcia-Huidobro, M. R., et al. (2022). Metabolic rate allometry in intertidal mussels across environmental gradients: The role of coastal carbonate system parameters in mediating the effects of latitude and temperature. Mar. Pollut. Bull., 184, 114149.
Abstract: We assess the role of direct and indirect effects of coastal environmental drivers (including the parameters of the carbonate system) on energy expenditure (MR) and body mass (M) of the intertidal mussel, Perumytilus pur-puratus, across 10 populations distributed over 2800 km along the Southern Eastern Pacific (SEP) coast. We find biogeographic and local variation in carbonate system variables mediates the effects of latitude and temperature on metabolic rate allometry along the SEP coast. Also, the fitted Piecewise Structural Equation models (PSEM) have greater predictive ability (conditional R2 = 0.95) relative to the allometric scaling model (R2 = 0.35). The largest standardized coefficients for MR and M were determined by the influence of temperature and latitude, followed by pCO2, pH, total alkalinity, and salinity. Thus, physiological diversity of P. purpuratus along the SEP coast emerges as the result of direct and indirect effects of biogeographic and local environmental variables.
|
|
|
Lagos, M., Caceres, C. W., & Lardies, M. A. (2014). Geographic variation in acid- base balance of the intertidal crustacean Cyclograpsus cinereus ( Decapoda, Grapsidae) during air exposure. J. Mar. Biol. Assoc. U.K., 94(1), 159–165.
Abstract: In intertidal poikilotherms with wide geographic distribution, physiological variations are ubiquitous, due to phenotypic plasticity and/or individual geographic variation. Using the grapsid crab, Cyclograpsus cinereus as a study model, acclimatization differences in respiratory physiology were evaluated among populations along the Chilean coast, covering a latitudinal gradient of about 2000km. This species inhabits the supratidal zones and, therefore, is subject to constant immersion and emersion periods, producing physiological acidification due to CO2 retention, mainly in the branchial cavity. Individuals of six populations were collected along the coastline of Chile and were exposed to air for different time periods in the laboratory. The following parameters were measured: pH, Ca2+, Cl- and haemolymphatic lactate dehydrogenase (LDH) enzyme activity. Populations from lower latitudes were significantly different from those from central and southern Chile, with a higher haemolymphatic pH variation and higher Ca2+ level, along with lower levels of Cl- and LDH enzyme activity. This indicates that the populations from lower latitudes, which are subject to higher air temperatures during emersion, have a higher homeostatic capacity during emersion periods than those of intermediate and higher latitudes. This response seems to be determined by genetic bases due to adaptation to the local environment.
|
|
|
Lagos, N. A., Benitez, S., Duarte, C., Lardies, M. A., Broitman, B. R., Tapia, C., et al. (2016). Effects of temperature and ocean acidification on shell characteristics of Argopecten purpuratus: implications for scallop aquaculture in an upwelling-influenced area. Aquac. Environ. Interact., 8, 357–370.
Abstract: Coastal upwelling regions already constitute hot spots of ocean acidification as naturally acidified waters are brought to the surface. This effect could be exacerbated by ocean acidification and warming, both caused by rising concentrations of atmospheric CO2. Along the Chilean coast, upwelling supports highly productive fisheries and aquaculture activities. However, during recent years, there has been a documented decline in the national production of the native scallop Argopecten purpuratus. We assessed the combined effects of temperature and pCO(2)-driven ocean acidification on the growth rates and shell characteristics of this species farmed under the natural influence of upwelling waters occurring in northern Chile (30 degrees S, Tongoy Bay). The experimental scenario representing current conditions (14 degrees C, pH similar to 8.0) were typical of natural values recorded in Tongoy Bay, whilst conditions representing the low pH scenario were typical of an adjacent upwelling area (pH similar to 7.6). Shell thickness, weight, and biomass were reduced under low pH (pH similar to 7.7) and increased temperature (18 degrees C) conditions. At ambient temperature (14 degrees C) and low pH, scallops showed increased shell dissolution and low growth rates. However, elevated temperatures ameliorated the impacts of low pH, as evidenced by growth rates in both pH treatments at the higher temperature treatment that were not significantly different from the control treatment. The impact of low pH at current temperature on scallop growth suggests that the upwelling could increase the time required for scallops to reach marketable size. Mortality of farmed scallops is discussed in relation to our observations of multiple environmental stressors in this upwelling-influenced area.
|
|
|
Lagos, N. A., Benitez, S., Grenier, C., Rodriguez-Navarro, A. B., Garcia-Herrera, C., Abarca-Ortega, A., et al. (2021). Plasticity in organic composition maintains biomechanical performance in shells of juvenile scallops exposed to altered temperature and pH conditions. Sci. Rep., 11(1), 24201.
Abstract: The exposure to environmental variations in pH and temperature has proven impacts on benthic ectotherms calcifiers, as evidenced by tradeoffs between physiological processes. However, how these stressors affect structure and functionality of mollusk shells has received less attention. Episodic events of upwelling of deep cold and low pH waters are well documented in eastern boundary systems and may be stressful to mollusks, impairing both physiological and biomechanical performance. These events are projected to become more intense, and extensive in time with ongoing global warming. In this study, we evaluate the independent and interactive effects of temperature and pH on the biomineral and biomechanical properties of Argopecten purpuratus scallop shells. Total organic matter in the shell mineral increased under reduced pH (similar to 7.7) and control conditions (pH similar to 8.0). The periostracum layer coating the outer shell surface showed increased protein content under low pH conditions but decreasing sulfate and polysaccharides content. Reduced pH negatively impacts shell density and increases the disorder in the orientation of calcite crystals. At elevated temperatures (18 degrees C), shell microhardness increased. Other biomechanical properties were not affected by pH/temperature treatments. Thus, under a reduction of 0.3 pH units and low temperature, the response of A. purpuratus was a tradeoff among organic compounds (biopolymer plasticity), density, and crystal organization (mineral plasticity) to maintain shell biomechanical performance, while increased temperature ameliorated the impacts on shell hardness. Biopolymer plasticity was associated with ecophysiological performance, indicating that, under the influence of natural fluctuations in pH and temperature, energetic constraints might be critical in modulating the long-term sustainability of this compensatory mechanism.
|
|
|
Lardies, M. A., & Wehrtmann, I. S. (2011). Gonadal development in males of Notocrangon antarcticus (Decapoda: Caridea) from the Weddell Sea, Antarctica. Polar Biol., 34(5), 707–713.
Abstract: Our knowledge on reproductive traits of marine decapods is mainly based on studies concerning reproductive features of females, while the description of trends in reproductive cycles for males are scarce. Here, we analyzed the gonad development and the seasonal variation of the gonadosomatic index (GSI) of male Notocrangon antarcticus (N = 106; collected between 1986 and 1992; Weddell Sea), one of the most common caridean shrimp inhabiting the Antarctica. Male size ranged from 10.2 to 17.7 mm CL (carapax length), and individuals were significantly larger in autumn. The length of appendix masculina increased with male size, and there was no evidence for sex reversal, corroborating the assumption of dioceism in N. antarcticus. The average dry weight of the males was highest (mean 0.39) in autumn. The highest and lowest gonad dry weights were obtained from summer samples; however, we did not detect significant differences among seasons. The highest mean GSI was calculated for individuals collected in summer, and mean GSI was significantly different between summer-autumn and summer-spring, but not in autumn-spring. The GSI remained practically constant, independent of male CL. The size at sexual maturity was 13.8 mm CL, a size smaller than previously reported for N. antarcticus. The results obtained demonstrate that peak reproductive productivity of male N. antarcticus is during the summer months, when abundant nutritional resources are available.
|
|
|
Lardies, M. A., Arias, M. B., & Bacigalupe, L. D. (2010). Phenotypic covariance matrix in life-history traits along a latitudinal gradient: a study case in a geographically widespread crab on the coast of Chile. Mar. Ecol.-Prog. Ser., 412, 179–187.
Abstract: Geographically widely spread species can cope with environmental differences among habitats by genetic differentiation and/or phenotypic flexibility. In marine crustaceans, intraspecific variations in life-history traits are pervasive along latitudinal clines. Replicated latitudinal clines are of evolutionary interest because they provide evidence of the occurrence of natural selection. If the means of traits along the latitudinal gradient are expected to be the result of natural selection, there is no reason why variances and covariances will not also be subject to selection, since selection is essentially a multivariate phenomenon. We studied life-history changes in means, variances, and covariances (i.e. P matrix) in 6 populations of the endemic crab Cyclograpsus cinereus (Decapoda: Grapsidae) along a latitudinal gradient over 19 degrees on the Chilean coast. Trait means differed among localities for all traits analyzed (i.e. female size, number and size of eggs, and reproductive output), and the variation displayed a clinal pattern. In general, the main result that emerged from planned comparisons of P matrices is that, when detected, differences between localities mainly reflect differences in the magnitude of phenotypic variation (i.e. eigenvalues), rather than in the relationships between traits (i.e. eigenvectors). Sea-surface temperature was only correlated with the covariance between egg numbers and reproductive output. Matrices comparisons for Flury and jackknife methods were highly linked, with limits of biogeographic provinces described for the coast of Chile. Our study strongly highlights the importance of estimating the P matrix, not only mean values, in order to understand the evolution of life-history traits along a latitudinal gradient. Furthermore, the study of the variation in the P matrix might provide important insights into those evolutionary forces acting on it.
|
|
|
Lardies, M. A., Arias, M. B., Poupin, M. J., & Bacigalupe, L. D. (2014). Heritability of hsp70 expression in the beetle Tenebrio molitor: Ontogenetic and environmental effects. J. Insect Physiol., 67, 70–75.
Abstract: Ectotherms constitute the vast majority of terrestrial biodiversity and are especially likely to be vulnerable to climate warming because their basic physiological functions such as locomotion, growth, and reproduction are strongly influenced by environmental temperature. An integrated view about the effects of global warming will be reached not just establishing how the increase in mean temperature impacts the natural populations but also establishing the effects of the increase in temperature variance. One of the molecular responses that are activated in a cell under a temperature stress is the heat shock protein response (HSP). Some studies that have detected consistent differences among thermal treatments and ontogenetic stages in HSP70 expression have assumed that these differences had a genetic basis and consequently expression would be heritable. We tested for changes in quantitative genetic parameters of HSP70 expression in a half-sib design where individuals of the beetle Tenebrio molitor were maintained in constant and varying thermal environments. We estimated heritability of HSP70 expression using a linear mixed modelling approach in different ontogenetic stages. Expression levels of HSP70 were consistently higher in the variable environment and heritability estimates were low to moderate. The results imply that within each ontogenetic stage additive genetic variance was higher in the variable environment and in adults compared with constant environment and larvae stage, respectively. We found that almost all the genetic correlations across ontogenetic stages and environment were positive. These suggest that directional selection for higher levels of expression in one environment will result in higher expression levels of HSP70 on the other environment for the same ontogenetic stage. (C) 2014 Elsevier Ltd. All rights reserved.
|
|
|
Lardies, M. A., Arias, M. B., Poupin, M. J., Manriquez, P. H., Torres, R., Vargas, C. A., et al. (2014). Differential response to ocean acidification in physiological traits of Concholepas concholepas populations. J. Sea Res., 90, 127–134.
Abstract: Phenotypic adaptation to environmental fluctuations frequently occurs by preexisting plasticity and its role as a major component of variation in physiological diversity is being widely recognized. Few studies have considered the change in phenotypic flexibility among geographic populations in marine calcifiers to ocean acidification projections, despite the fact that this type of study provides understanding about how the organism may respond to this chemical change in the ocean. We examined the geographic variation in CO2 seawater concentrations in the phenotype and in the reaction norm of physiological traits using a laboratory mesocosm approach with short-term acclimation in two contrasting populations (Antofagasta and Calfuco) of the intertidal snail Concholepas concholepas. Our results show that elevated pCO(2) conditions increase standard metabolic rates in both populations of the snail juveniles, likely due to the higher energy cost of homeostasis. juveniles of C concholepas in the Calfuco (southern) population showed a lower increment of metabolic rate in high-pCO(2) environments concordant with a lesser gene expression of a heat shock protein with respect to the Antofagasta (northern) population. Combined these results indicate a negative effect of ocean acidification on whole-organism functioning of C. concholepas. Finally, the significant Population x pCO(2) level interaction in both studied traits indicates that there is variation between populations in response to high-pCO(2) conditions. (C) 2014 Elsevier BM. All rights reserved.
|
|
|
Lardies, M. A., Munoz, J. L., Paschke, K. A., & Bozinovic, F. (2011). Latitudinal variation in the aerial/aquatic ratio of oxygen consumption of a supratidal high rocky-shore crab. Mar. Ecol.-Evol. Persp., 32(1), 42–51.
Abstract: The colonisation of the terrestrial environment by crustaceans is more apparent in tropical latitudes because of the high diversity of semi-terrestrial and terrestrial crabs. However, in temperate regions there are also great numbers of crustaceans that inhabit ecological niches at the water-air interface. Grapsidae crabs (Decopoda) are especially important in studies of water-to-land transition as the family contains species occupying the intertidal and adjacent regions. A way to evaluate the ability of intertidal invertebrates to breathe air is to measure the aerial/aquatic oxygen consumption ratio. The objective of this study was to test the effect of thermal variation on the aquatic and aerial metabolism. We selected as study model the decopoda crab Cyclograpsus cinereus Dana and utilised five populations of the species spread over 2000 km along the Chilean coast. To determine the compensation capacity in respiration with respect to latitude, we evaluated metabolic rate at the same temperature in a common garden design in the laboratory, to examine the extent to which variation in crab physiology is environmentally determined. Whereas in our study, mb (body mass) varied significantly with latitude, the difference in mass-independent metabolism both in air and water persisted, indicating that observed differences in MR (Metabolic Rate) were not an effect of differences in body size. We demonstrated that C. cinereus is able to breath oxygen from air and water as expected for an amphibious crab. Almost all the studied populations of C. cinereus show a aerial /aquatic metabolism ratio near 1. The pattern found indicates an increase in metabolic rate, both aerial and aquatic, in low latitudes and therefore does not support the latitudinal compensation hypothesis for temperate habitats. Finally, these kinds of studies are required to make the necessary link between ecological physiology and macroecology and to help develop a global understanding of organismal function in marine systems.
|
|
|
Manriquez, P. H., Jara, M. E., Torres, R., Mardones, M. L., Lagos, N. A., Lardies, M. A., et al. (2014). Effects of ocean acidification on larval development and early post-hatching traits in Concholepas concholepas (loco). Mar. Ecol.-Prog. Ser., 514, 87–103.
Abstract: Larval stages represent a bottleneck influencing the persistence of marine populations with complex life cycles. Concholepas concholepas is a gastropod species that sustains the most important small-scale artisanal fisheries of the Chile-Peru Humboldt Coastal current system. In this study, newly-laid egg capsules of C. concholepas collected from 3 localities along the Chilean coast were used to evaluate the potential consequences of projected near-future ocean acidification (OA) on larval development and early post-hatching larval traits. We compared hatching time, hatching success and early survivorship of encapsulated larvae reared under contrasting average levels of pCO(2): 382 (present-day), ca. 715 and ca. 1028 μatm CO2 (levels expected in near-future scenarios of OA). Moreover, we compared morphological larval traits such as protoconch size, thickness and statolith size at hatching. Some of the developmental traits were negatively affected by pCO(2) levels, source locality, female identity, or the interaction between those factors. Meanwhile, the effect of pCO(2) levels on morphological larval traits showed significant interactions depending on differences among egg capsules and females. Our results suggest that OA may decouple hatching time from oceanographic processes associated with larval transport and reduce larval survivorship during the dispersive phase, with a potential impact on the species' population dynamics. However, the results also show geographic variability and developmental plasticity in the investigated traits. This variation may lead to an increased acclimatization ability, facilitate the persistence of natural populations and mitigate the negative effects that OA might have on landings and revenues derived from the fishery of this species.
|
|
|
Martel, S. I., Fernandez, C., Lagos, N. A., Labra, F. A., Duarte, C., Vivanco, J. F., et al. (2022). Acidification and high-temperature impacts on energetics and shell production of the edible clam Ameghinomya antiqua. Front. Mar. Sci., 9, 972135.
Abstract: Warming and ocean acidification are currently critical global change drivers for marine ecosystems due to their complex and irreversible effects on the ecology and evolution of marine communities. Changes in the chemistry and the temperature of the ocean impact the biological performance of marine resources by affecting their energy budget and thus imposing energetic restrictions and trade-offs on their survival, growth, and reproduction. In this study, we evaluated the interplaying effects of increased pCO(2) levels and temperature on the economically relevant clam Ameghinomya antiqua, an infaunal bivalve inhabiting a wide distributional range along the coast of Chile. Juvenile clams collected from southern Chile were exposed to a 90-day experimental set-up emulating the current and a future scenario projeced to the end of the current century for both high pCO(2)/low-pH and temperature (10 and 15 degrees C) projected for the Chilean coast. Clams showed physiological plasticity to different projected environmental scenarios without mortality. In addition, our results showed that the specimens under low-pH conditions were not able to meet the energetic requirements when increased temperature imposed high maintenance costs, consequently showing metabolic depression. Indeed, although the calcification rate was negative in the high-pCO(2) scenario, it was the temperature that determined the amount of shell loss. These results indicate that the studied clam can face environmental changes for short-term periods modifying energetic allocation on maintenance and growth processes, but with possible long-term population costs, endangering the sustainability of an important benthic artisanal fisheries resource.
|
|
|
Navarro, J. M., Duarte, C., Manriquez, P. H., Lardies, M. A., Torres, R., Acuna, K., et al. (2016). Ocean warming and elevated carbon dioxide: multiple stressor impacts on juvenile mussels from southern Chile. ICES J. Mar. Sci., 73(3), 764–771.
Abstract: The combined effect of increased ocean warming and elevated carbon dioxide in seawater is expected to have significant physiological and ecological consequences at many organizational levels of the marine ecosystem. In the present study, juvenile mussels Mytilus chilensis were reared for 80 din a factorial combination of two temperatures (12 and 16 degrees C) and three pCO(2) levels (380, 700, and 1000 μatm). We investigated the combined effects of increasing seawater temperature and pCO(2) on the physiological performance (i.e. feeding, metabolism, and growth). Lower clearance rate (CR) occurred at the highest pCO(2) concentration (1000 μatm) compared with the control (380 μatm) and with the intermediate concentration of pCO(2) (700 μatm). Conversely, CR was significantly higher at 16 degrees C than at 12 degrees C. Significant lower values of oxygen uptake were observed in mussels exposed to 1000 μatm pCO(2) level compared with those exposed to 380 μatm pCO(2). Scope for growth (SFG) was significantly lower at the highest pCO(2) concentration compared with the control. Mussels exposed to 700 μatm pCO(2) did not show significantly different SFG from the other two pCO(2) treatments. SFG was significantly higher at 16 degrees C than at 12 degrees C. This might be explained because the experimental mussels were exposed to temperatures experienced in their natural environment, which are within the range of thermal tolerance of the species. Our results suggest that the temperature rise within the natural range experienced by M. chilensis generates a positive effect on the processes related with energy gain (i.e. feeding and absorption) to be allocated to growth. In turn, the increase in the pCO(2) level of 1000 μatm, independent of temperature, adversely affects this species, with significantly reduced energy allocated to growth (SFG) compared with the control treatment.
|
|