|
Cillero, J. I., Henriquez, P. A., Ledger, T. W., Ruz, G. A., & Gonzalez, B. (2022). Individual competence predominates over host nutritional status in Arabidopsis root exudate-mediated bacterial enrichment in a combination of four Burkholderiaceae species. BMC Microbiol., 22(1), 218.
Abstract: Background Rhizosphere microorganisms play a crucial role in plant health and development. Plant root exudates (PRE) are a complex mixture of organic molecules and provide nutritional and signaling information to rhizosphere microorganisms. Burkholderiaceae species are non-abundant in the rhizosphere but exhibit a wide range of plant-growth-promoting and plant-health-protection effects. Most of these plant-associated microorganisms have been studied in isolation under laboratory conditions, whereas in nature, they interact in competition or cooperation with each other. To improve our understanding of the factors driving growth dynamics of low-abundant bacterial species in the rhizosphere, we hypothesized that the growth and survival of four Burkholderiaceae strains (Paraburkholderia phytofirmans PsJN, Cupriavidus metallidurans CH34, C. pinatubonensis JMP134 and C. taiwanensis LMG19424) in Arabidopsis thaliana PRE is affected by the presence of each other. Results Differential growth abilities of each strain were found depending on plant age and whether PRE was obtained after growth on N limitation conditions. The best-adapted strain to grow in PRE was P. phytofirmans PsJN, with C. pinatubonensis JMP134 growing better than the other two Cupriavidus strains. Individual strain behavior changed when they succeeded in combinations. Clustering analysis showed that the 4-member co-culture grouped with one of the best-adapted strains, either P. phytofirmans PsJN or C. pinatubonensis JMP134, depending on the PRE used. Sequential transference experiments showed that the behavior of the 4-member co-culture relies on the type of PRE provided for growth. Conclusions The results suggest that individual strain behavior changed when they grew in combinations of two, three, or four members, and those changes are determined first by the inherent characteristics of each strain and secondly by the environment.
|
|
|
Gazitua, M. C., Morgante, V., Poupin, M. J., Ledger, T., Rodriguez-Valdecantos, G., Herrera, C., et al. (2021). The microbial community from the early-plant colonizer (Baccharis linearis) is required for plant establishment on copper mine tailings. Sci. Rep., 11(1), 10448.
Abstract: Plants must deal with harsh environmental conditions when colonizing abandoned copper mine tailings. We hypothesized that the presence of a native microbial community can improve the colonization of the pioneer plant, Baccharis linearis, in soils from copper mining tailings. Plant growth and microbial community compositions and dynamics were determined in cultivation pots containing material from two abandoned copper mining tailings (Huana and Tambillos) and compared with pots containing fresh tailings or surrounding agricultural soil. Controls without plants or using irradiated microbe-free substrates, were also performed. Results indicated that bacteria (Actinobacteria, Gammaproteobacteria, and Firmicutes groups) and fungi (Glomus genus) are associated with B. linearis and may support plant acclimation, since growth parameters decreased in both irradiated (transiently without microbial community) and fresh tailing substrates (with a significantly different microbial community). Consistently, the composition of the bacterial community from abandoned copper mining tailings was more impacted by plant establishment than by differences in the physicochemical properties of the substrates. Bacteria located at B. linearis rhizoplane were clearly the most distinct bacterial community compared with those of fresh tailings, surrounding soil and non-rhizosphere abandoned tailings substrates. Beta diversity analyses showed that the rhizoplane bacterial community changed mainly through species replacement (turnover) than species loss (nestedness). In contrast, location/geographical conditions were more relevant than interaction with the plants, to explain fungal community differences.
|
|
|
Heuer, H., Binh, C. T. T., Jechalke, S., Kopmann, C., Zimmerling, U., Krogerrecklenfort, E., et al. (2012). IncP-1 epsilon plasmids are important vectors of antibiotic resistance genes in agricultural systems: diversification driven by class 1 integron gene cassettes. Front. Microbiol., 3, 8 pp.
Abstract: The role of broad-host range IncP-1 epsilon plasmids in the dissemination of antibiotic resistance in agricultural systems has not yet been investigated. These plasmids were detected in total DNA from all of 16 manure samples and in arable soil based on a novel 5'-nuclease assay for real-time PCR. A correlation between IncP-1 epsilon plasmid abundance and antibiotic usage was revealed. In a soil microcosm experiment the abundance of IncP-1 epsilon plasmids was significantly increased even 127 days after application of manure containing the antibiotic compound sulfadiazine, compared to soil receiving only manure, only sulfadiazine, or water. Fifty IncP-1 epsilon plasmids that were captured in E. coli CV601gfp from bacterial communities of manure and arable soil were characterized by PCR and hybridization. All plasmids carried class 1 integrons with highly varying sizes of the gene cassette region and the sul1 gene. Three IncP-1 epsilon plasmids captured from soil bacteria and one from manure were completely sequenced. The backbones were nearly identical to that of the previously described IncP-1 epsilon plasmid pKJK5. The plasmids differed mainly in the composition of a Tn402-like transposon carrying a class 1 integron with varying gene cassettes, IS 1326, and in three of the plasmids the tetracycline resistance transposon In 1721 with various truncations. Diverse Beta- and Gammaproteobacteria were revealed as hosts of one of the IncP-1 epsilon plasmids in soil microcosms. Our data suggest that IncP-1 epsilon plasmids are important vectors for horizontal transfer of antibiotic resistance in agricultural systems.
|
|
|
Kraiser, T., Stuardo, M., Manzano, M., Ledger, T., & Gonzalez, B. (2013). Simultaneous assessment of the effects of an herbicide on the triad: rhizobacterial community, an herbicide degrading soil bacterium and their plant host. Plant Soil, 366(1-2), 377–388.
Abstract: This work addresses the relevant effects that one single compound, used as model herbicide, provokes on the activity/survival of a suitable herbicide degrading model bacterium and on a plant that hosts this bacterium and its bacterial rhizospheric community. The effects of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), on Acacia caven hosting the 2,4-D degrading bacterium Cupriavidus pinatubonensis JMP134, and its rhizospheric microbiota, were simultaneously addressed in plant soil microcosms, and followed by culture dependent and independent procedures, herbicide removal tests, bioprotection assays and use of encapsulated bacterial cells. The herbicide provokes deleterious effects on the plant, which are significantly diminished by the presence of the plant associated C. pinatubonensis, especially with encapsulated cells. This improvement correlated with increased 2,4-D degradation rates. The herbicide significantly changes the structure of the A. caven bacterial rhizospheric community; and it also diminishes the preference of C. pinatubonensis for the A. caven rhizosphere compared with the surrounding bulk soil. The addition of an herbicide to soil triggers a complex, although more or less predictable, suite of effects on rhizobacterial communities, herbicide degrading bacteria and their plant hosts that should be taken into account in fundamental studies and design of bio(phyto)remediation procedures.
|
|
|
Ledger, T., Aceituno, F., & Gonzalez, B. (2009). 3-Chlorobenzoate is taken up by a chromosomally encoded transport system in Cupriavidus necator JMP134. Microbiology-(UK), 155, 2757–2765.
Abstract: Cupriavidus necator JMP134(pJP4) is able to grow on 3-chlorobenzoate (3-CB), a model chloroaromatic pollutant. Catabolism of 3-CB is achieved via the expression of the chromosomally encoded benABCD genes and the tfd genes from plasmid pJP4. Since passive diffusion of benzoic acid derivatives at physiological pH is negligible, the uptake of this compound should be facilitated by a transport system. However, no transporter has so far been described to perform this function, and identification of chloroaromatic compound transporters has been limited. In this work, uptake experiments using 3-[ring-UL-C-14]CB showed an inducible transport system in strain JMP134, whose expression is activated by 3-CB and benzoate. A similar level of 3-CB uptake was found for a mutant strain of JMP134, defective in chlorobenzoate degradation, indicating that metabolic drag is not an important component of the measured uptake rate. Competitive inhibitor assays showed that uptake of 3-CB was inhibited by benzoate and, to a lesser degree, by 3-CB and 3,5-dichlorobenzoate, but not by any of 12 other substituted benzoates tested. The expression of several gene candidates for this transport function was analysed by RT-PCR, including both permease-type and ABC-type ATP-dependent transporters. Induction of a chromosomally encoded putative permease transporter (benP gene) was found specifically in the presence of 3-CB or benzoate. A benP knockout mutant of strain JMP134 displayed an almost complete loss of 3-CB transport activity. This is to our knowledge the first report of a 3-CB transporter.
|
|
|
Ledger, T., Rojas, S., Timmermann, T., Pinedo, I., Poupin, M. J., Garrido, T., et al. (2016). Volatile-Mediated Effects Predominate in Paraburkholderia phytofirmans Growth Promotion and Salt Stress Tolerance of Arabidopsis thaliana. Front. Microbiol., 7, 18 pp.
Abstract: Abiotic stress has a growing impact on plant growth and agricultural activity worldwide. Specific plant growth promoting rhizobacteria have been reported to stimulate growth and tolerance to abiotic stress in plants, and molecular mechanisms like phytohormone synthesis and 1-aminocyclopropane-1-carboxylate deamination are usual candidates proposed to mediate these bacterial effects. Paraburkholderia phytofirmans PsJN is able to promote growth of several plant hosts, and improve their tolerance to chilling, drought and salinity. This work investigated bacterial determinants involved in PsJN stimulation of growth and salinity tolerance in Arabidopsis thaliana, showing bacteria enable plants to survive long-term salinity treatment, accumulating less sodium within leaf tissues relative to non-inoculated controls. Inactivation of specific bacterial genes encoding ACC deaminase, auxin catabolism, N-acyl-homosenne-lactone production, and flagellin synthesis showed these functions have little influence on bacterial induction of salinity tolerance. Volatile organic compound emission from strain PsJN was shown to reproduce the effects of direct bacterial inoculation of roots, increasing plant growth rate and tolerance to salinity evaluated both in vitro and in soil. Furthermore, early exposure to VOCs from P phytofirmans was sufficient to stimulate long-term effects observed in Arabidopsis growth in the presence and absence of salinity. Organic compounds were analyzed in the headspace of PsJN cultures, showing production of 2-undecanone, 7-hexanol, 3-methylbutanol and dimethyl disulfide. Exposure of A. thaliana to different quantities of these molecules showed that they are able to influence growth in a wide range of added amounts. Exposure to a blend of the first three compounds was found to mimic the effects of PsJN on both general growth promotion and salinity tolerance. To our knowledge, this is the first report on volatile compound-mediated induction of plant abiotic stress tolerance by a Paraburkholderia species.
|
|
|
Ledger, T., Zuniga, A., Kraiser, T., Dasencich, P., Donoso, R., Perez-Pantoja, D., et al. (2012). Aromatic compounds degradation plays a role in colonization of Arabidopsis thaliana and Acacia caven by Cupriavidus pinatubonensis JMP134. Antonie Van Leeuwenhoek, 101(4), 713–723.
Abstract: Plant rhizosphere and internal tissues may constitute a relevant habitat for soil bacteria displaying high catabolic versatility towards xenobiotic aromatic compounds. Root exudates contain various molecules that are structurally related to aromatic xenobiotics and have been shown to stimulate bacterial degradation of aromatic pollutants in the rhizosphere. The ability to degrade specific aromatic components of root exudates could thus provide versatile catabolic bacteria with an advantage for rhizosphere colonization and growth. In this work, Cupriavidus pinatubonensis JMP134, a well-known aromatic compound degrader (including the herbicide 2,4-dichlorophenoxyacetate, 2,4-D), was shown to stably colonize Arabidopsis thaliana and Acacia caven plants both at the rhizoplane and endorhizosphere levels and to use root exudates as a sole carbon and energy source. No deleterious effects were detected on these colonized plants. When a toxic concentration of 2,4-D was applied to colonized A. caven, a marked resistance was induced in the plant, showing that strain JMP134 was both metabolically active and potentially beneficial to its host. The role for the beta-ketoadipate aromatic degradation pathway during plant root colonization by C. pinatubonensis JMP134 was investigated by gene inactivation. A C. pinatubonensis mutant derivative strain displayed a reduced ability to catabolise root exudates isolated from either plant host. In this mutant strain, a lower competence in the rhizosphere of A. caven was also shown, both in gnotobiotic in vitro cultures and in plant/soil microcosms.
|
|
|
Lykidis, A., Perez-Pantoja, D., Ledger, T., Mavromatis, K., Anderson, I. J., Ivanova, N. N., et al. (2010). The Complete Multipartite Genome Sequence of Cupriavidus necator JMP134, a Versatile Pollutant Degrader. PLoS One, 5(3), 13 pp.
Abstract: Background: Cupriavidus necator JMP134 is a Gram-negative beta-proteobacterium able to grow on a variety of aromatic and chloroaromatic compounds as its sole carbon and energy source. Methodology/ Principal Findings: Its genome consists of four replicons (two chromosomes and two plasmids) containing a total of 6631 protein coding genes. Comparative analysis identified 1910 core genes common to the four genomes compared (C. necator JMP134, C. necator H16, C. metallidurans CH34, R. solanacearum GMI1000). Although secondary chromosomes found in the Cupriavidus, Ralstonia, and Burkholderia lineages are all derived from plasmids, analyses of the plasmid partition proteins located on those chromosomes indicate that different plasmids gave rise to the secondary chromosomes in each lineage. The C. necator JMP134 genome contains 300 genes putatively involved in the catabolism of aromatic compounds and encodes most of the central ring-cleavage pathways. This strain also shows additional metabolic capabilities towards alicyclic compounds and the potential for catabolism of almost all proteinogenic amino acids. This remarkable catabolic potential seems to be sustained by a high degree of genetic redundancy, most probably enabling this catabolically versatile bacterium with different levels of metabolic responses and alternative regulation necessary to cope with a challenging environment. From the comparison of Cupriavidus genomes, it is possible to state that a broad metabolic capability is a general trait for Cupriavidus genus, however certain specialization towards a nutritional niche (xenobiotics degradation, chemolithoautotrophy or symbiotic nitrogen fixation) seems to be shaped mostly by the acquisition of “specialized” plasmids. Conclusions/Significance: The availability of the complete genome sequence for C. necator JMP134 provides the groundwork for further elucidation of the mechanisms and regulation of chloroaromatic compound biodegradation.
|
|
|
Montalva-Medel, M., Ledger, T., Ruz, G. A., & Goles, E. (2021). Lac Operon Boolean Models: Dynamical Robustness and Alternative Improvements. Mathematics, 9(6), 600.
Abstract: In Veliz-Cuba and Stigler 2011, Boolean models were proposed for the lac operon in Escherichia coli capable of reproducing the operon being OFF, ON and bistable for three (low, medium and high) and two (low and high) parameters, representing the concentration ranges of lactose and glucose, respectively. Of these 6 possible combinations of parameters, 5 produce results that match with the biological experiments of Ozbudak et al., 2004. In the remaining one, the models predict the operon being OFF while biological experiments show a bistable behavior. In this paper, we first explore the robustness of two such models in the sense of how much its attractors change against any deterministic update schedule. We prove mathematically that, in cases where there is no bistability, all the dynamics in both models lack limit cycles while, when bistability appears, one model presents 30% of its dynamics with limit cycles while the other only 23%. Secondly, we propose two alternative improvements consisting of biologically supported modifications; one in which both models match with Ozbudak et al., 2004 in all 6 combinations of parameters and, the other one, where we increase the number of parameters to 9, matching in all these cases with the biological experiments of Ozbudak et al., 2004.
|
|
|
Mora-Ruiz, M. D., Alejandre-Colomo, C., Ledger, T., Gonzalez, B., Orfila, A., & Rossello-Mora, R. (2018). Non-halophilic endophytes associated with the euhalophyte Arthrocnemum macrostachyum and their plant growth promoting activity potential. FEMS Microbiol. Lett., 365(19), 11 pp.
Abstract: Numerous microbial taxa establish natural relations with plants, and especially endophytes can be relevant in the development and growth promotion of their host. In this work, we explore the diversity of non-halophilic microorganisms inhabiting the endosphere of the halophyte Arthrocnemum macrostachyum. A total of 1045 isolates were recovered using standard non-saline media, which clustered into 22 operational phylogenetic units (OPUs) including 7 putative new species and 13 OPUs not previously detected as endophytes. The more abundant isolates corresponded to close relatives of Kushneria indalinina/K. marisflavi, Providencia rettgeri, Pseudomonas zhaodongensis and Bacillus safensis, which made up to similar to 62% of the total isolates. We also isolated OPUs not detected by the culture-independent approach reinforcing the need of culturing to reveal the microbial diversity associated with plants. Additionally, the plant growth promoting activity was evaluated by representative strains of the more abundant OPUs (total = 94 strains) including also some previously isolated halophiles from the same plants. Under both saline and non-saline conditions, some strains principally those affiliated to Paenibacillus borealis, Staphylococcus equorum, Salinicola halophilus and Marinococcus tarijensis, presented growth promoting activity in Arabidopsis thaliana, which was evaluated as an increment of weight and root length.
|
|
|
Pinedo, I., Ledger, T., Greve, M., & Poupin, M. J. (2015). Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. Front. Plant Sci., 6, 17 pp.
Abstract: Salinity is one of the major limitations for food production worldwide. Improvement of plant salt-stress tolerance using plant-growth promoting rhizobacteria (PGPR) has arisen as a promising strategy to help overcome this limitation. However, the molecular and biochemical mechanisms controlling PGPR/plant interactions under salt-stress remain unclear. The main objective of this study was to obtain new insights into the mechanisms underlying salt-stress tolerance enhancement in the salt-sensitive Arabidopsis thaliana Col-0 plants, when inoculated with the well-known PGPR strain Burkholderia phytofirmans PsJN. To tackle this, different life history traits, together with the spatiotemporal accumulation patterns for key metabolites and salt-stress related transcripts, were analyzed in inoculated plants under short and long-term salt-stress. Inoculated plants displayed faster recovery and increased tolerance after sustained salt-stress. PsJN treatment accelerated the accumulation of proline and transcription of genes related to abscisic acid signaling (Relative to Dessication, RD29A and RD29B), ROS scavenging Oscorbate Peroxidase 2), and detoxification (Glyoxalase I 7), and down-regulated the expression of Lipoxygenase 2 (related to jasmonic acid biosynthesis). Among the general transcriptional effects of this bacterium, the expression pattern of important ion-homeostasis related genes was altered after short and longterm stress (Arabidopsis K Transporter 1, High-Affinity K Transporter 1, Sodium Hydrogen Exchanger 2, and Arabidopsis Salt Overly Sensitive 1). In all, the faster and stronger molecular changes induced by the inoculation suggest a PsJN-priming effect, which may explain the observed tolerance after short-term and sustained salt-stress in plants. This study provides novel information about possible mechanisms involved in salt-stress tolerance induced by PGPR in plants, showing that certain changes are maintained over time. This opens up new venues to study these relevant biological associations, as well as new approaches to a better understanding of the spatiotemporal mechanisms involved in stress tolerance in plants.
|
|
|
Poupin, M. J., Ledger, T., Rosello-Mora, R., & Gonzalez, B. (2023). The Arabidopsis holobiont: a (re)source of insights to understand the amazing world of plant-microbe interactions. Environ. microbiome, 18(1), 9.
Abstract: As holobiont, a plant is intrinsically connected to its microbiomes. However, some characteristics of these microbiomes, such as their taxonomic composition, biological and evolutionary role, and especially the drivers that shape them, are not entirely elucidated. Reports on the microbiota of Arabidopsis thaliana first appeared more than ten years ago. However, there is still a lack of a comprehensive understanding of the vast amount of information that has been generated using this holobiont. The main goal of this review was to perform an in-depth, exhaustive, and systematic analysis of the literature regarding the Arabidopsis-microbiome interaction. A core microbiota was identified as composed of a few bacterial and non-bacterial taxa. The soil (and, to a lesser degree, air) were detected as primary microorganism sources. From the plant perspective, the species, ecotype, circadian cycle, developmental stage, environmental responses, and the exudation of metabolites were crucial factors shaping the plant-microbe interaction. From the microbial perspective, the microbe-microbe interactions, the type of microorganisms belonging to the microbiota (i.e., beneficial or detrimental), and the microbial metabolic responses were also key drivers. The underlying mechanisms are just beginning to be unveiled, but relevant future research needs were identified. Thus, this review provides valuable information and novel analyses that will shed light to deepen our understanding of this plant holobiont and its interaction with the environment.
|
|
|
Quintero-Galvis, J. F., Paleo-Lopez, R., Solano-Iguaran, J. J., Poupin, M. J., Ledger, T., Gaitan-Espitia, J. D., et al. (2018). Exploring the evolution of multicellularity in Saccharomyces cerevisiae under bacteria environment: An experimental phylogenetics approach. Ecol. Evol., 8(9), 4619–4630.
Abstract: There have been over 25 independent unicellular to multicellular evolutionary transitions, which have been transformational in the complexity of life. All of these transitions likely occurred in communities numerically dominated by unicellular organisms, mostly bacteria. Hence, it is reasonable to expect that bacteria were involved in generating the ecological conditions that promoted the stability and proliferation of the first multicellular forms as protective units. In this study, we addressed this problem by analyzing the occurrence of multicellularity in an experimental phylogeny of yeasts (Sacharomyces cerevisiae) a model organism that is unicellular but can generate multicellular clusters under some conditions. We exposed a single ancestral population to periodic divergences, coevolving with a cocktail of environmental bacteria that were inoculated to the environment of the ancestor, and compared to a control (no bacteria). We quantified culturable microorganisms to the level of genera, finding up to 20 taxa (all bacteria) that competed with the yeasts during diversification. After 600 generations of coevolution, the yeasts produced two types of multicellular clusters: clonal and aggregative. Whereas clonal clusters were present in both treatments, aggregative clusters were only present under the bacteria treatment and showed significant phylogenetic signal. However, clonal clusters showed different properties if bacteria were present as follows: They were more abundant and significantly smaller than in the control. These results indicate that bacteria are important modulators of the occurrence of multicellularity, providing support to the idea that they generated the ecological conditions-promoting multicellularity.
|
|
|
Rodríguez-Valdecantos, G., Torres-Rojas, F., Muñoz-Echeverría, S., Mora-Ruiz, M. D., Rosselló-Móra, R., Cid-Cid, L., et al. (2023). Aromatic compounds depurative and plant growth promotion rhizobacteria abilities of Allenrolfea vaginata (Amaranthaceae) rhizosphere microbial communities from a solar saltern hypersaline soil. Front. Microbiol., 14, 1251602.
Abstract: Introduction: This work investigates whether rhizosphere microorganisms that colonize halophyte plants thriving in saline habitats can tolerate salinity and provide beneficial effects to their hosts, protecting them from environmental stresses, such as aromatic compound (AC) pollution.Methods: To address this question, we conducted a series of experiments. First, we evaluated the effects of phenol, tyrosine, 4-hydroxybenzoic acid, and 2,4-dichlorophenoxyacetic (2,4-D) acids on the soil rhizosphere microbial community associated with the halophyte Allenrolfea vaginata. We then determined the ability of bacterial isolates from these microbial communities to utilize these ACs as carbon sources. Finally, we assessed their ability to promote plant growth under saline conditions.Results: Our study revealed that each AC had a different impact on the structure and alpha and beta diversity of the halophyte bacterial (but not archaeal) communities. Notably, 2,4-D and phenol, to a lesser degree, had the most substantial decreasing effects. The removal of ACs by the rhizosphere community varied from 15% (2,4-D) to 100% (the other three ACs), depending on the concentration. Halomonas isolates were the most abundant and diverse strains capable of degrading the ACs, with strains of Marinobacter, Alkalihalobacillus, Thalassobacillus, Oceanobacillus, and the archaea Haladaptatus also exhibiting catabolic properties. Moreover, our study found that halophile strains Halomonas sp. LV-8T and Marinobacter sp. LV-48T enhanced the growth and protection of Arabidopsis thaliana plants by 30% to 55% under salt-stress conditions.Discussion: These results suggest that moderate halophile microbial communities may protect halophytes from salinity and potential adverse effects of aromatic compounds through depurative processes.
|
|
|
Zuniga, A., Poupin, M. J., Donoso, R., Ledger, T., Guiliani, N., Gutierrez, R. A., et al. (2013). Quorum Sensing and Indole-3-Acetic Acid Degradation Play a Role in Colonization and Plant Growth Promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Mol. Plant-Microbe Interact., 26(5), 546–553.
Abstract: Although not fully understood, molecular communication in the rhizosphere plays an important role regulating traits involved in plant-bacteria association. Burkholderia phytofirmans PsJN is a well-known plant-growth-promoting bacterium, which establishes rhizospheric and endophytic colonization in different plants. A competent colonization is essential for plant-growth-promoting effects produced by bacteria. Using appropriate mutant strains of B. phytofirmans, we obtained evidence for the importance of N-acyl homoserine lactone-mediated (quorum sensing) cell-to-cell communication in efficient colonization of Arabidopsis thaliana plants and the establishment of a beneficial interaction. We also observed that bacterial degradation of the auxin indole-3-acetic acid (IAA) plays a key role in plant-growth-promoting traits and is necessary for efficient rhizosphere colonization. Wildtype B. phytofirmans but not the iacC mutant in IAA mineralization is able to restore promotion effects in roots of A. thaliana in the presence of exogenously added IAA, indicating the importance of this trait for promoting primary root length. Using a transgenic A. thaliana line with suppressed auxin signaling (miR393) and analyzing the expression of auxin receptors in wild-type inoculated plants, we provide evidence that auxin signaling in plants is necessary for the growth promotion effects produced by B. phytofirmans. The interplay between ethylene and auxin signaling was also confirmed by the response of the plant to a 1-aminocyclopropane-1-carboxylate deaminase bacterial mutant strain.
|
|