Anabalon, A., Astefanesei, D., & Mann, R. (2017). Holographic equation of state in fluid/gravity duality. Phys. Lett. B, 770, 272–277.
Abstract: We establish a precise relation between mixed boundary conditions for scalar fields in asymptotically anti de Sitter spacetimes and the equation of state of the dual fluid. We provide a detailed derivation of the relation in the case of five bulkdimensions for scalar fields saturating the BreitenlohnerFreedman bound. As a concrete example, we discuss the five dimensional scalartensor theories describing dark energy in four dimensions. (C) 2017 Published by Elsevier B.V.

Acena, A., Anabalon, A., Astefanesei, D., & Mann, R. (2014). Hairy planar black holes in higher dimensions. J. High Energy Phys., (1), 21 pp.
Abstract: We construct exact hairy planar black holes in Ddimensional AdS gravity. These solutions are regular except at the singularity and have stressenergy that satisfies the null energy condition. We present a detailed analysis of their thermodynamical properties and show that the first law is satisfied. We also discuss these solutions in the context of AdS/CFT duality and construct the associated cfunction.

Anabalon, A., Astefanesei, D., & Mann, R. (2013). Exact asymptotically flat charged hairy black holes with a dilaton potential. J. High Energy Phys., (10), 22 pp.
Abstract: We find broad classes of exact 4dimensional asymptotically flat black hole solutions in EinsteinMaxwell theories with a nonminimally coupled dilaton and its nontrivial potential. We consider a few interesting limits, in particular, a regular generalization of the dilatonic ReissnerNordstrom solution and, also, smooth deformations of supersymmetric black holes. Further examples are provided for more general dilaton potentials. We discuss the thermodynamical properties and show that the first law is satisfied. In the nonextremal case the entropy depends, as expected, on the asymptotic value of the dilaton. In the extremal limit, the entropy is determined purely in terms of charges and is independent of the asymptotic value of the dilaton. The attractor mechanism can be used as a criterion for the existence of the regular solutions. Since there is a 'competition' between the effective potential and dilaton potential, we also obtain regular extremal black hole solutions with just one U(1) gauge field turned on.
