Home | << 1 >> |
Caceres, C., Moczko, E., Basozabal, I., Guerreiro, A., & Piletsky, S. (2021). Molecularly Imprinted Nanoparticles (NanoMIPs) Selective for Proteins: Optimization of a Protocol for Solid-Phase Synthesis Using Automatic Chemical Reactor. Polymers, 13(3), 314.
Abstract: Molecularly imprinted polymer nanoparticles (nanoMIPs) are receiving broad interest as robust and highly selective synthetic receptors for a variety of molecules. Due to their stability, inexpensive synthesis and easy implementation, they are considered a promising alternative to antibodies in sensors, diagnostics and separation applications. The most challenging targets for the production of synthetic receptors are proteins due to their fragile nature and the multitude of possible binding sites in their structure. Herein, we describe the modification and optimization of the protocol for synthesis of nanoMIPs with specificity for proteins using the prototype of an automated solid-phase synthesizer. Using an automated system gives an advantage for the simple, fast and fully controlled, reproducible production of nanoMIPs. The molecular imprinting in the reactor is performed using a template covalently immobilized on a solid support, in mild conditions suitable for preserving protein native structure. The validation of the protocol was made by assessing the ability to regenerate a solid-phase, and by measuring affinity and specificity of nanoparticles. As a model protein, we have chosen trypsin since its enzymatic activity can be easily monitored by using a commercial colorimetric assay. Different protocols were tested for their ability to improve the yield of high affinity nanoparticles in the final elution.
|
Caceres, C., Morgado, M. D. G., Bozo, F. C., Piletsky, S., & Moczko, E. (2022). Rapid Selective Detection and Quantification of beta-Blockers Used in Doping Based on Molecularly Imprinted Nanoparticles (NanoMIPs). Polymers, 14(24), 5420.
Abstract: Human performance enhancing drugs (PEDs), frequently used in sport competitions, are strictly prohibited by the World Anti-Doping Agency (WADA). Biological samples collected from ath-letes and regular patients are continuously tested regarding the identification and/or quantification of the banned substances. Current work is focused on the application of a new analytical method, molecularly imprinted nanoparticles (nanoMIPs), to detect and determine concentrations of certain prohibited drugs, such as B-blockers, in water and human urine samples. These medications are used in the treatment of cardiovascular conditions, negative effects of adrenaline (helping to relief stress), and hypertension (slowing down the pulse and softening the arteries). They can also significantly increase muscle relaxation and improve heart efficiency. The new method of the detection and quantification of B-blockers is based on synthesis, characterization, and implementation of nanoMIPs (so-called plastic antibodies). It offers numerous advantages over the traditional methods, including high binding capacity, affinity, and selectivity for target molecules. Additionally, the whole process is less complicated, cheaper, and better controlled. The size and shape of the nanoMIPs is evaluated by dynamic light scattering (DLS) and transmission electron microscope (TEM). The affinity and selectivity of the nanoparticles are investigated by competitive pseudo enzyme-linked immunosorbent assay (pseudo-ELISA) similar to common immunoassays employing natural antibodies. To provide reliable results towards either doping detection or therapeutic monitoring using the minimal invasive method, the qualitative and quantitative analysis of these drugs is performed in water and human urine samples. It is demonstrated that the assay can detect B-blockers in water within the linear range 1 nmolmiddotL(-1)-1 mmolmiddotL(-1) for atenolol with the detection limit 50.6 ng mL(-1), and the linear range 1 mmolmiddotL(-1)-10 mmolmiddotL(-1) for labetalol with the detection limit of 90.5 ngmiddotmL(-1). In human urine samples, the linear range is recorded in the concentration range 0.1 mmolmiddotL(-1)-10 nmolmiddotL(-1) for atenolol and 1 mmolmiddotL(-1)-10 nmolmiddotL(-1) for labetalol with a detection limit of 61.0 ngmiddotmL(-1)for atenolol and 99.4 ngmiddotmL(-1) for labetalol.
Keywords: doping in sports; performance enhancing drugs (PEDs); beta-blockers; atenolol; labetalol; molecularly imprinting nanoparticles (nanoMIPs); enzyme-linked immunosorbent assay (ELISA); “pseudo” enzyme-linked immunosorbent assay (pseudo-ELISA); dynamic analysis light scattering (DLS); transmission electron microscope (TEM)
|
Cáeres, C., Heusser, B., Garnham, A., & Moczko, E. (2023). The Major Hypotheses of Alzheimer's Disease: Related Nanotechnology-Based Approaches for Its Diagnosis and Treatment. Cells, 12(23), 2669.
Abstract: Alzheimer's disease (AD) is a well-known chronic neurodegenerative disorder that leads to the progressive death of brain cells, resulting in memory loss and the loss of other critical body functions. In March 2019, one of the major pharmaceutical companies and its partners announced that currently, there is no drug to cure AD, and all clinical trials of the new ones have been cancelled, leaving many people without hope. However, despite the clear message and startling reality, the research continued. Finally, in the last two years, the Food and Drug Administration (FDA) approved the first-ever medications to treat Alzheimer's, aducanumab and lecanemab. Despite researchers' support of this decision, there are serious concerns about their effectiveness and safety. The validation of aducanumab by the Centers for Medicare and Medicaid Services is still pending, and lecanemab was authorized without considering data from the phase III trials. Furthermore, numerous reports suggest that patients have died when undergoing extended treatment. While there is evidence that aducanumab and lecanemab may provide some relief to those suffering from AD, their impact remains a topic of ongoing research and debate within the medical community. The fact is that even though there are considerable efforts regarding pharmacological treatment, no definitive cure for AD has been found yet. Nevertheless, it is strongly believed that modern nanotechnology holds promising solutions and effective clinical strategies for the development of diagnostic tools and treatments for AD. This review summarizes the major hallmarks of AD, its etiological mechanisms, and challenges. It explores existing diagnostic and therapeutic methods and the potential of nanotechnology-based approaches for recognizing and monitoring patients at risk of irreversible neuronal degeneration. Overall, it provides a broad overview for those interested in the evolving areas of clinical neuroscience, AD, and related nanotechnology. With further research and development, nanotechnology-based approaches may offer new solutions and hope for millions of people affected by this devastating disease.
|
Sandoval-Rivas, D., Moczko, E., & Morales, D. V. (2021). Evaluation and characterization of a new method of extracting bark wax from Pinus radiata D. Don. Ind. Crops Prod., 174, 114161.
Abstract: The bark of Pinus radiata D. Don is a bioresource of great worldwide abundance. While various forms of use have been studied, it is still a little-used bioresource. Due to its great accumulation, significant solid emissions of this residue generate environmental problems such as changes in soil chemistry, ecological problems such as the alteration of arthropod communities and fire risk. The opportunity to take advantage of this bioresource could be in its wax content, which could be a replacement for the main raw materials used in the production of cosmetics. These currently correspond to petroleum-derived substances, such as petroleum jelly, paraffin, or mineral oil. The importance of replacing these raw materials is that several studies report that they are the main causes of human skin diseases, such as chemical hypersensitivity syndrome and allergic contact dermatitis. This study seeks to prove that lipophilic extracts (waxes) from pine bark can replace petroleum-derived raw materials used in cosmetics. To achieve this, pine bark at drying conditions was characterized, and the performance of wax extraction by various treatments was studied. The density, viscosity, melting point, and solubility in culture media of the obtained waxes were determined. The waxes were chemically characterized by FT-IR and GC-MS analysis. The results reveal that the maximum moisture of the bark is 14.54 %, the best extraction yields are obtained by using water at 120 degrees C and 1.2 atm, and petroleum ether (3.12 %), alkaline hydrolysis 1 mol L-1 (NaOH) and petroleum ether (3.53 %) ethyl acetate (3.23 %). Values were close to the reference study using the rapid lipid extraction method. The density of the wax is 0.845 g mL-1 and its viscosity of 530 cP (24 degrees C), and the melting point varied according to the extractive treatment at between 25 and 40 degrees C. Solubility tests made it possible to determine that the 10/50/1000 mu L ratio of modified Eagle Dulbecco wax/dimethylsulfoxide/medium allows homogeneous solubilization of the wax without the presence of precipitates. Chemical characterization identified typical functional groups of plant-based waxes such as long-chain alkanes, alkyls, methyl groups, esters, and carbonyls, with the most abundant fatty acids being C:22 and C:24.
Keywords: Pine wax; Extraction; Radiata pine
|
Sanhueza, L., Garrido, K., Celis, F., Garcia, M., Caceres, C., Moczko, E., et al. (2023). Tailoring the electroactive area of carbon screen-printed electrodes by simple activation steps towards rutin determination. J. Solid State Electrochem., 27, 1511–1521.
Abstract: Screen-printed electrodes (SPEs) have the advantage of being considered electrochemical cells that can be implemented in portable sensor applications. With the aim to improve the SPE performance, herein, we present different electrochemical surface modifications of carbon-based SPEs by cyclic voltammetry in hydrogen peroxide or sodium peroxide solution. SPEs were characterized using contact angle, Raman spectroscopy, laser-induced breakdown spectroscopy (LIBS), and electrochemical methods, including cyclic voltammetry (CV), electrochemical impedance spectroscopy, and square wave voltammetry (SVW). Main results agree with the observed changes by Raman spectroscopy and the sp(2)/sp(3) ratio (I-D/I-G) of carbon vibrational bands. The diminishing of C-2 Swan signal determined by LIBS suggests that the activation steps produced defects onto the working electrode in the SPE. Considering that the different intermolecular forces of the redox couples are useful to indirectly evaluate the different functional groups, the activated SPEs were studied in the presence of rutin and [Fe(CN)(6)](3-)/[Fe(CN)(6)](4-) redox couples. Main results show that the electrochemical response of the activated electrode surfaces can be properly used to improve the rutin electrochemical determination.
|