|
Cont, D., Yan, F., Reiners, A., Nortmann, L., Molaverdikhani, K., Palle, E., et al. (2022). Silicon in the dayside atmospheres of two ultra-hot Jupiters. Astron. Astrophys., 657, L2.
Abstract: Atmospheres of highly irradiated gas giant planets host a large variety of atomic and ionic species. Here we observe the thermal emission spectra of the two ultra-hot Jupiters WASP-33b and KELT-20b /MASCARA-2b in the near-infrared wavelength range with CARMENES. Via high-resolution Doppler spectroscopy, we searched for neutral silicon (Si) in their dayside atmospheres. We detect the Si spectral signature of both planets via cross-correlation with model spectra. Detection levels of 4.8 sigma and 5.4 sigma, respectively, are observed when assuming a solar atmospheric composition. This is the first detection of Si in exoplanet atmospheres. The presence of Si is an important finding due to its fundamental role in cloud formation and, hence, for the planetary energy balance. Since the spectral lines are detected in emission, our results also confirm the presence of an inverted temperature profile in the dayside atmospheres of both planets.
|
|
|
Schlecker, M., Kossakowski, D., Brahm, R., Espinoza, N., Henning, T., Carone, L., et al. (2020). A highly eccentric warm jupiter orbiting TIC 237913194. Astron. J., 160(6), 275.
Abstract: The orbital parameters of warm Jupiters serve as a record of their formation history, providing constraints on formation scenarios for giant planets on close and intermediate orbits. Here, we report the discovery of TIC.237913194b, detected in full-frame images from Sectors 1 and 2 of the Transiting Exoplanet Survey Satellite (TESS), ground-based photometry (Chilean-Hungarian Automated Telescope, Las Cumbres Observatory Global Telescope), and Fiber-fed Extended Range Optical Spectrograph radial velocity time series. We constrain its mass to M-P = 1.942(-0.091)(+0.091) M-J and its radius to R-P = 1.117(-0.047)(+0.054) R-J, implying a bulk density similar to Neptune's. It orbits a G-type star (M-* = 1.026(-0.055)(+0.057) M-circle dot, V = 12.1 mag) with a period of 15.17 days on one of the most eccentric orbits of all known warm giants (e approximate to 0.58). This extreme dynamical state points to a past interaction with an additional, undetected massive companion. A tidal evolution analysis showed a large tidal dissipation timescale, suggesting that the planet is not a progenitor for a hot Jupiter caught during its high-eccentricity migration. TIC.237913194b further represents an attractive opportunity to study the energy deposition and redistribution in the atmosphere of a warm Jupiter with high eccentricity.
|
|
|
Sedaghati, E., Sanchez-Lopez, A., Czesla, S., Lopez-Puertas, M., Amado, P. J., Palle, E., et al. (2022). Moderately misaligned orbit of the warm sub-Saturn HD 332231 b. Astron. Astrophys., 659, A44.
Abstract: Measurements of exoplanetary orbital obliquity angles for different classes of planets are an essential tool in testing various planet formation theories. Measurements for those transiting planets on relatively large orbital periods (P > 10 d) present a rather difficult observational challenge. Here we present the obliquity measurement for the warm sub-Saturn planet HD 332231 b, which was discovered through Transiting Exoplanet Survey Satellite photometry of sectors 14 and 15, on a relatively large orbital period (18.7 d). Through a joint analysis of previously obtained spectroscopic data and our newly obtained CARMENES transit observations, we estimated the spin-orbit misalignment angle, lambda to be -42.0(-10.6)(+11.3) deg, which challenges Laplacian ideals of planet formation. Through the addition of these new radial velocity data points obtained with CARMENES, we also derived marginal improvements on other orbital and bulk parameters for the planet, as compared to previously published values. We showed the robustness of the obliquity measurement through model comparison with an aligned orbit. Finally, we demonstrated the inability of the obtained data to probe any possible extended atmosphere of the planet, due to a lack of precision, and place the atmosphere in the context of a parameter detection space.
|
|
|
Yan, F., Espinoza, N., Molaverdikhani, K., Henning, T., Mancini, L., Mallonn, M., et al. (2020). LBT transmission spectroscopy of HAT-P-12b: Confirmation of a cloudy atmosphere with no significant alkali features. Astron. Astrophys., 642, 13 pp.
Abstract: The hot sub-Saturn-mass exoplanet HAT-P-12b is an ideal target for transmission spectroscopy because of its inflated radius. We observed one transit of the planet with the multi-object double spectrograph (MODS) on the Large Binocular Telescope (LBT) with the binocular mode and obtained an atmosphere transmission spectrum with a wavelength coverage of similar to 0.4-0.9 μm. The spectrum is relatively flat and does not show any significant sodium or potassium absorption features. Our result is consistent with the revised Hubble Space Telescope (HST) transmission spectrum of a previous work, except that the HST result indicates a tentative detection of potassium. The potassium discrepancy could be the result of statistical fluctuation of the HST dataset. We fit the planetary transmission spectrum with an extensive grid of cloudy models and confirm the presence of high-altitude clouds in the planetary atmosphere. The fit was performed on the combined LBT and HST spectrum, which has an overall wavelength range of 0.4-1.6 μm. The LBT/MODS spectrograph has unique advantages in transmission spectroscopy observations because it can cover a wide wavelength range with a single exposure and acquire two sets of independent spectra simultaneously.
|
|