Bottcher, L., Montealegre, P., Goles, E., & Gersbach, H. (2020). Competing activistsPolitical polarization. Physica A, 545, 13 pp.
Abstract: Recent empirical findings suggest that societies have become more polarized in various countries. That is, the median voter of today represents a smaller fraction of society compared to two decades ago and yet, the mechanisms underlying this phenomenon are not fully understood. Since interactions between influential actors ("activists'') and voters play a major role in opinion formation, e.g. through social media, we develop a macroscopic opinion model in which competing activists spread their political ideas in specific groups of society. These ideas spread further to other groups in declining strength. While unilateral spreading shifts the opinion distribution, competition of activists leads to additional phenomena: Small heterogeneities among competing activists cause them to target different groups in society, which amplifies polarization. For moderate heterogeneities, we obtain target cycles and further amplification of polarization. In such cycles, the stronger activist differentiates himself from the weaker one, while the latter aims to imitate the stronger activist. (C) 2019 Elsevier B.V. All rights reserved.

Goles, E., & Montealegre, P. (2014). Computational complexity of threshold automata networks under different updating schemes. Theor. Comput. Sci., 559, 3–19.
Abstract: Given a threshold automata network, as well as an updating scheme over its vertices, we study the computational complexity associated with the prediction of the future state of a vertex. More precisely, we analyze two classes of local functions: the majority and the ANDOR rule (vertices take the AND or the OR logic functions over the state of its neighborhoods). Depending on the updating scheme, we determine the complexity class (NC, P, NP, PSPACE) where the prediction problem belongs. (C) 2014 Elsevier B.V. All rights reserved.

Goles, E., & Montealegre, P. (2015). The complexity of the majority rule on planar graphs. Adv. Appl. Math., 64, 111–123.
Abstract: We study the complexity of the majority rule on planar automata networks. We reduce a special case of the Monotone Circuit Value Problem to the prediction problem of determining if a vertex of a planar graph will change its state when the network is updated with the majority rule. (C) 2014 Elsevier Inc. All rights reserved.

Goles, E., & Montealegre, P. (2020). The complexity of the asynchronous prediction of the majority automata. Inf. Comput., 274(SI).
Abstract: We consider the asynchronous prediction problem for some automaton as the one consisting in determining, given an initial configuration, if there exists a nonzero probability that some selected site changes its state, when the network is updated picking one site at a time uniformly at random. We show that for the majority automaton, the asynchronous prediction problem is in NC in the twodimensional lattice with von Neumann neighborhood. Later, we show that in three or more dimensions the problem is NPComplete.

Goles, E., Lobos, F., Montealegre, P., Ruivo, E. L. P., & de Oliveira, P. P. B. (2020). Computational Complexity of the Stability Problem for Elementary Cellular Automata. J. Cell. Autom., 15(4), 261–304.
Abstract: Given an elementary cellular automaton and a cell v, we define the stability decision problem as the determination of whether or not the state of cell v will ever change, at least once, during the time evolution of the rule, over a finite input configuration. Here, we perform the study of the entire elementary cellular automata rule space, for the two possible decision cases of the problem, namely, changes in v from state 0 to 1 (0 > 1), and the other way round (1 > 0). Out of the 256 elementary cellular automata, we show that for all of them, at least one of the two decision problems is in the NC complexity class.

Goles, E., Maldonado, D., Montealegre, P., & Ollinger, N. (2020). On the complexity of the stability problem of binary freezing totalistic cellular automata. Inf. Comput., 274, 21 pp.
Abstract: In this paper we study the family of twostate Totalistic Freezing Cellular Automata (TFCA) defined over the triangular and square grids with von Neumann neighborhoods. We say that a Cellular Automaton is Freezing and Totalistic if the active cells remain unchanged, and the new value of an inactive cell depends only on the sum of its active neighbors. We classify all the Cellular Automata in the class of TFCA, grouping them in five different classes: the Trivial rules, Turing Universal rules, Algebraic rules, Topological rules and Fractal Growing rules. At the same time, we study in this family the STABILITY problem, consisting in deciding whether an inactive cell becomes active, given an initial configuration. We exploit the properties of the automata in each group to show that: For Algebraic and Topological Rules the STABILITY problem is in NC. For Turing Universal rules the STABILITY problem is PComplete. (C) 2020 Elsevier Inc. All rights reserved.

Goles, E., Montealegre, P., & Perrot, K. (2021). Freezing sandpiles and Boolean threshold networks: Equivalence and complexity. Adv. Appl. Math., 125, 102161.
Abstract: The NC versus Phard classification of the prediction problem for sandpiles on the two dimensional grid with von Neumann neighborhood is a famous open problem. In this paper we make two kinds of progresses, by studying its freezing variant. First, it enables to establish strong connections with other well known prediction problems on networks of threshold Boolean functions such as majority. Second, we can highlight some necessary and sufficient elements to the dynamical complexity of sandpiles, with a surprisingly crucial role of cells with two grains. (C) 2021 Elsevier Inc. All rights reserved.

Goles, E., Montealegre, P., Perrot, K., & Theyssier, G. (2018). On the complexity of twodimensional signed majority cellular automata. J. Comput. Syst. Sci., 91, 1–32.
Abstract: We study the complexity of signed majority cellular automata on the planar grid. We show that, depending on their symmetry and uniformity, they can simulate different types of logical circuitry under different modes. We use this to establish new bounds on their overall complexity, concretely: the uniform asymmetric and the nonuniform symmetric rules are Turing universal and have a Pcomplete prediction problem; the nonuniform asymmetric rule is intrinsically universal; no symmetric rule can be intrinsically universal. We also show that the uniform asymmetric rules exhibit cycles of superpolynomial length, whereas symmetric ones are known to have bounded cycle length. (C) 2017 Elsevier Inc. All rights reserved.

Goles, E., Montealegre, P., & RiosWilson, M. (2020). On The Effects Of Firing Memory In The Dynamics Of Conjunctive Networks. Discret. Contin. Dyn. Syst., 40(10), 5765–5793.
Abstract: A boolean network is a map F : {0, 1}(n) > {0, 1}(n) that defines a discrete dynamical system by the subsequent iterations of F. Nevertheless, it is thought that this definition is not always reliable in the context of applications, especially in biology. Concerning this issue, models based in the concept of adding asynchronicity to the dynamics were propose. Particularly, we are interested in a approach based in the concept of delay. We focus in a specific type of delay called firing memory and it effects in the dynamics of symmetric (nondirected) conjunctive networks. We find, in the caseis in which the implementation of the delay is not uniform, that all the complexity of the dynamics is somehow encapsulated in the component in which the delay has effect. Thus, we show, in the homogeneous case, that it is possible to exhibit attractors of nonpolynomial period. In addition, we study the prediction problem consisting in, given an initial condition, determinate if a fixed coordinate will eventually change its state. We find again that in the nonhomogeneous case all the complexity is determined by the component that is affected by the delay and we conclude in the homogeneous case that this problem is PSPACEcomplete.

Goles, E., Montealegre, P., Salo, V., & Torma, I. (2016). PSPACEcompleteness of majority automata networks. Theor. Comput. Sci., 609, 118–128.
Abstract: We study the dynamics of majority automata networks when the vertices are updated according to a block sequential updating scheme. In particular, we show that the complexity of the problem of predicting an eventual state change in some vertex, given an initial configuration, is PSPACEcomplete. (C) 2015 Elsevier B.V. All rights reserved.

Goles, E., Montealegre, P., & Vera, J. (2016). Naming Game Automata Networks. J. Cell. Autom., 11(56), 497–521.
Abstract: In this paper we introduce automata networks to model some features of the emergence of a vocabulary related with the naming game model. We study the dynamical behaviour (attractors and convergence) of extremal and majority local functions.

Golovach, P. A., Heggernes, P., Lima, P. T., & Montealegre, P. (2020). Finding connected secluded subgraphs. J. Comput. Syst. Sci., 113, 101–124.
Abstract: Problems related to finding induced subgraphs satisfying given properties form one of the most studied areas within graph algorithms. However, for many applications, it is desirable that the found subgraph has as few connections to the rest of the graph as possible, which gives rise to the SECLUDED PiSUBGRAPH problem. Here, input k is the size of the desired subgraph, and input t is a limit on the number of neighbors this subgraph has in the rest of the graph. This problem has been studied from a parameterized perspective, and unfortunately it turns out to be W[1]hard for many graph properties Pi, even when parameterized by k + t. We show that the situation changes when we are looking for a connected induced subgraph satisfying Pi. In particular, we show that the CONNECTED SECLUDED PiSUBGRAPH problem is FPT when parameterized by just t for many important graph properties Pi. (C) 2020 Elsevier Inc. All rights reserved.

Golovach, P. A., Heggernes, P., Lima, P. T., & Montealegre, P. (2020). Finding Connected Secluded Subgraphs. In 12th International Symposium on Parameterized and Exact Computation (Vol. 89, pp. 1–13).

Liedloff, M., Montealegre, P., & Todinca, I. (2019). Beyond Classes of Graphs with “Few” Minimal Separators: FPT Results Through Potential Maximal Cliques. Algorithmica, 81(3), 986–1005.
Abstract: Let P(G,X) be a property associating a boolean value to each pair (G,X) where G is a graph and X is a vertex subset. Assume that P is expressible in counting monadic second order logic (CMSO) and let t be an integer constant. We consider the following optimization problem: given an input graph G=(V,E), find subsets XFV such that the treewidth of G[F] is at most t, property P(G[F],X) is true and X is of maximum size under these conditions. The problem generalizes many classical algorithmic questions, e.g., Longest Induced Path, Maximum Induced Forest, IndependentHPacking, etc. Fomin et al. (SIAM J Comput 44(1):5487, 2015) proved that the problem is polynomial on the class of graph Gpoly, i.e. the graphs having at most poly(n) minimal separators for some polynomial poly. Here we consider the class Gpoly+kv, formed by graphs of Gpoly to which we add a set of at most k vertices with arbitrary adjacencies, called modulator. We prove that the generic optimization problem is fixed parameter tractable on Gpoly+kv, with parameter k, if the modulator is also part of the input.

Lobos, F., Goles, E., Ruivo, E. L. P., de Oliveira, P. P. B., & Montealegre, P. (2018). Mining a Class of Decision Problems for Onedimensional Cellular Automata. J. Cell. Autom., 13(56), 393–405.
Abstract: Cellular automata are locally defined, homogeneous dynamical systems, discrete in space, time and state variables. Within the context of onedimensional, binary, cellular automata operating on cyclic configurations of odd length, we consider the general decision problem: if the initial configuration satisfies a given property, the lattice should converge to the fixedpoint of all 1s ((1) over right arrow), or to (0) over right arrow, otherwise. Two problems in this category have been widely studied in the literature, the parity problem [1] and the density classification task [4]. We are interested in determining all cellular automata rules with neighborhood sizes of 2, 3, 4 and 5 cells (i.e., radius r of 0.5, 1, 1.5 and 2.5) that solve decision problems of the previous type. We have demonstrated a theorem that, for any given rule in those spaces, ensures the non existence of fixed points other than (0) over right arrow and (1) over right arrow for configurations of size larger than 2(2r), provided that the rule does not support different fixed points for any configuration with size smaller than or equal to 2(2r). In addition, we have a proposition that ensures the convergence to only (0) over right arrow or (1) over right arrow of any initial configuration, if the rule complies with given conditions. By means of theoretical and computational approaches, we determined that: for the rule spaces defined by radius 0.5 and r = 1, only 1 and 2 rules, respectively, converge to (1) over right arrow or (0) over right arrow, to any initial configuration, and both recognize the same language, and for the rule space defined by radius r = 1.5, 40 rules satisfy this condition and recognize 4 different languages. Finally, for the radius 2 space, out of the 4,294,967,296 different rules, we were able to significantly filter it out, down to 40,941 candidate rules. We hope such an extensive mining should unveil new decision problems of the type widely studied in the literature.
