|
Brahm, R., Ulmer-Moll, S., Hobson, M. J., Jordan, A., Henning, T., Trifonov, T., et al. (2023). Three Long-period Transiting Giant Planets from TESS. Astron. J., 165(6), 227.
Abstract: We report the discovery and orbital characterization of three new transiting warm giant planets. These systems were initially identified as presenting single-transit events in the light curves generated from the full-frame images of the Transiting Exoplanet Survey Satellite. Follow-up radial velocity measurements and additional light curves were used to determine the orbital periods and confirm the planetary nature of the candidates. The planets orbit slightly metal-rich late F- and early G-type stars. We find that TOI 4406b has a mass of M ( P ) = 0.30 +/- 0.04 M (J), a radius of R ( P ) = 1.00 +/- 0.02 R (J), and a low-eccentricity orbit (e = 0.15 +/- 0.05) with a period of P = 30.08364 +/- 0.00005 days. TOI 2338b has a mass of M ( P ) = 5.98 +/- 0.20 M (J), a radius of R ( P ) = 1.00 +/- 0.01 R (J), and a highly eccentric orbit (e = 0.676 +/- 0.002) with a period of P = 22.65398 +/- 0.00002 days. Finally, TOI 2589b has a mass of M ( P ) = 3.50 +/- 0.10 M (J), a radius of R ( P ) = 1.08 +/- 0.03 R (J), and an eccentric orbit (e = 0.522 +/- 0.006) with a period of P = 61.6277 +/- 0.0002 days. TOI 4406b and TOI 2338b are enriched in metals compared to their host stars, while the structure of TOI 2589b is consistent with having similar metal enrichment to its host star.
|
|
|
Dempsey, A. M., Munoz, D. J., & Lithwick, Y. (2021). Outward Migration of Super-Jupiters. Astrophys. J. Lett., 918(2), L36.
Abstract: Recent simulations show that giant planets of about 1 M (J) migrate inward at a rate that differs from the type II prediction. Here we show that at higher masses, planets migrate outward. Our result differs from previous ones because of our longer simulation times, lower viscosity, and boundary conditions that allow the disk to reach a viscous steady state. We show that, for planets on circular orbits, the transition from inward to outward migration coincides with the known transition from circular to eccentric disks that occurs for planets more massive than a few Jupiters. In an eccentric disk, the torque on the outer disk weakens due to two effects: the planet launches weaker waves, and those waves travel further before damping. As a result, the torque on the inner disk dominates, and the planet pushes itself outward. Our results suggest that the many super-Jupiters observed by direct imaging at large distances from the star may have gotten there by outward migration.
|
|
|
Lai, D., & Munoz, D. J. (2023). Circumbinary Accretion: From Binary Stars to Massive Binary Black Holes. Annu. Rev. Astron. Astrophys., 61, 517–560.
Abstract: We review recent works on the dynamics of circumbinary accretion, including time variability, angular momentum transfer between the disk and the binary, and the secular evolution of accreting binaries. These dynamics impact stellar binary formation/evolution, circumbinary planet formation/migration, and the evolution of (super)massive black hole binaries. We discuss the dynamics and evolution of inclined/warped circumbinary disks and connect with observations of protoplanetary disks. A special kind of circumbinary accretion involves binaries embedded in big disks, which may contribute to the mergers of stellar-mass black holes in AGN disks. Highlights include the following:
Circumbinary accretion is highly variable, being modulated at P-b (the binary period) or similar to 5P(b), depending on the binary eccentricity e(b) and mass ratio q(b).
The inner region of the circumbinary disk can develop coherent eccentric structure, which may modulate the accretion and affect the physical processes (e.g., planet migration) taking place in the disk.
Over long timescales, circumbinary accretion steers binaries toward equal masses, and it does not always lead to binary orbital decay. The secular orbital evolution depends on the binary parameters (e(b) and q(b)) and on the thermodynamic properties of the accreting gas.
A misaligned disk around a low-eccentricity binary tends to evolve toward coplanarity due to viscous dissipation. But when e(b) is significant, the disk can evolve toward “polar alignment,” with the disk plane perpendicular to the binary plane.
|
|
|
Sedaghati, E., Jordan, A., Brahm, R., Munoz, D. J., Petrovich, C., & Hobson, M. J. (2023). Orbital Alignment of the Eccentric Warm Jupiter TOI-677 b. Astron. J., 166(3), 130.
Abstract: Warm Jupiters lay out an excellent laboratory for testing models of planet formation and migration. Their separation from the host star makes tidal reprocessing of their orbits ineffective, which preserves the orbital architectures that result from the planet-forming process. Among the measurable properties, the orbital inclination with respect to the stellar rotational axis, stands out as a crucial diagnostic for understanding the migration mechanisms behind the origin of close-in planets. Observational limitations have made the procurement of spin-orbit measurements heavily biased toward hot Jupiter systems. In recent years, however, high-precision spectroscopy has begun to provide obliquity measurements for planets well into the warm Jupiter regime. In this study, we present Rossiter-McLaughlin (RM) measurements of the projected obliquity angle for the warm Jupiter TOI-677 b using ESPRESSO at the VLT. TOI-677 b exhibits an extreme degree of alignment (lambda = 0.3 +/- 1.3 deg), which is particularly puzzling given its significant eccentricity (e approximate to 0.45). TOI-677 b thus joins a growing class of close-in giants that exhibit large eccentricities and low spin-orbit angles, which is a configuration not predicted by existing models. We also present the detection of a candidate outer brown dwarf companion on an eccentric, wide orbit (e approximate to 0.4 and P approximate to 13 yr). Using simple estimates, we show that this companion is unlikely to be the cause of the unusual orbit of TOI-677 b. Therefore, it is essential that future efforts prioritize the acquisition of RM measurements for warm Jupiters.
|
|
|
Siwek, M., Weinberger, R., Munoz, D. J., & Hernquist, L. (2023). Preferential accretion and circumbinary disc precession in eccentric binary systems. Mon. Not. Roy. Astron. Soc., 518(4), 5059–5071.
Abstract: We present a suite of high-resolution hydrodynamic simulations of binaries immersed in circumbinary accretion discs (CBDs). For the first time, we investigate the preferential accretion rate as a function of both eccentricity e(b) and mass ratio q(b) in a densely sampled parameter space, finding that when compared with circular binaries, (i) mass ratios grow more efficiently in binaries on moderately eccentric orbits (0.0 less than or similar to e(b) less than or similar to 0.4), and (ii) high eccentricities (e(b) greater than or similar to 0.6) suppress mass ratio growth. We suggest that this non-monotonic preferential accretion behaviour may produce an observable shift in the mass ratio distributions of stellar binaries and massive black hole binaries. We further find that the response of a CBD can be divided into three regimes, depending on eccentricity and mass ratio: (i) CBDs around circular binaries always precess freely, whereas CBDs around eccentric binaries either (ii) undergo forced precession or (iii) remain locked at an angle with respect to the binary periapsis. Forced precession in eccentric binaries is associated with strong modulation of individual accretion rates on the precession time-scale, a potentially observable signature in accreting binaries with short orbital periods. We provide CBD locking angles and precession rates as a function of e(b) and q(b) for our simulation suite.
|
|