|
Garcia-Huidobro, M. R., Poupin, M. J., Urrutia, C., Rodriguez-Navarro, A. B., Grenier, C., Vivanco, J. F., et al. (2021). An intrapopulational study of organic compounds and biomechanical properties of the shell of the Antarctic bivalve Laternula elliptica (P. P. King, 1832) at King George Island. Polar Biol., 44, 1343–1352.
Abstract: Laternula elliptica is a key bivalve species and widely distributed around the Antarctic continent. This bivalve has been the study subject in several studies centered on ecological, physiological, biochemical, and behavioral patterns. However, little is known about the chemistry and the biomechanical properties of the shells of this mollusk. Here, we present the first report of the intra-population variability in the organic composition and mechanical properties of L. elliptica shells. Further, we analyze different morphological traits and their association with the metabolism of a population of L. elliptica from King George Island, Western Antarctic Peninsula. The summer metabolic rates and the hepatosomatic index values indicate good health conditions of this clam's population. Shell periostracum chemistry is quite similar to bivalves from temperate regions, but the relative amount of protein increased ca. five-fold in shells of L. elliptica. The microhardness is approximately 32% lower than in bivalves from temperate regions. Our characterization of the L. elliptica shells suggests that periostracum chemistry could be specially fitted to avoid shell carbon exposure to dissolution (e.g., in corrosive acidified seawater). In contrast, the reduction in shell hardness may result from prioritizing behavioral (burial) and shell repairing strategies to confront biological (predators) and physical disturbances (e.g., ice scouring). Similar studies in other Antarctic mollusks will help understand the role of shell structure and function in confronting projected climate changes in the Antarctic ocean.
|
|
|
Lagos, N. A., Benitez, S., Grenier, C., Rodriguez-Navarro, A. B., Garcia-Herrera, C., Abarca-Ortega, A., et al. (2021). Plasticity in organic composition maintains biomechanical performance in shells of juvenile scallops exposed to altered temperature and pH conditions. Sci. Rep., 11(1), 24201.
Abstract: The exposure to environmental variations in pH and temperature has proven impacts on benthic ectotherms calcifiers, as evidenced by tradeoffs between physiological processes. However, how these stressors affect structure and functionality of mollusk shells has received less attention. Episodic events of upwelling of deep cold and low pH waters are well documented in eastern boundary systems and may be stressful to mollusks, impairing both physiological and biomechanical performance. These events are projected to become more intense, and extensive in time with ongoing global warming. In this study, we evaluate the independent and interactive effects of temperature and pH on the biomineral and biomechanical properties of Argopecten purpuratus scallop shells. Total organic matter in the shell mineral increased under reduced pH (similar to 7.7) and control conditions (pH similar to 8.0). The periostracum layer coating the outer shell surface showed increased protein content under low pH conditions but decreasing sulfate and polysaccharides content. Reduced pH negatively impacts shell density and increases the disorder in the orientation of calcite crystals. At elevated temperatures (18 degrees C), shell microhardness increased. Other biomechanical properties were not affected by pH/temperature treatments. Thus, under a reduction of 0.3 pH units and low temperature, the response of A. purpuratus was a tradeoff among organic compounds (biopolymer plasticity), density, and crystal organization (mineral plasticity) to maintain shell biomechanical performance, while increased temperature ameliorated the impacts on shell hardness. Biopolymer plasticity was associated with ecophysiological performance, indicating that, under the influence of natural fluctuations in pH and temperature, energetic constraints might be critical in modulating the long-term sustainability of this compensatory mechanism.
|
|
|
Moreno, R., Bezerra, B., Rudnick, H., Suazo-Martinez, C., Carvalho, M., Navarro, A., et al. (2020). Distribution Network Rate Making in Latin America. IEEE Power Energy Mag., 18(3), 33–48.
Abstract: Following the trend observed in developed economies, various Latin American governments are committed to reducing greenhouse gas emissions, particularly in the power sector. In countries such as Chile, Peru, Colombia, Brazil, and Mexico, various regulatory policies have been issued to meet renewable-generation integration targets and satisfy the increasing demand from consumers for supply quality. Meanwhile, the integration of distributed generation (DG) in rural and urban areas as well as the increasing need to integrate electric vehicles (EVs) in urban areas are driving important reforms in the distribution sector.
|
|
|
Munoz, M., Robles-Navarro, A., Fuentealba, P., & Cardenas, C. (2020). Predicting Deprotonation Sites Using Alchemical Derivatives. J. Phys. Chem. A, 124(19), 3754–3760.
Abstract: An alchemical transformation is any process, physical or fictitious, that connects two points in the chemical space. A particularly important transformation is the vanishing of a proton, whose energy can be linked to the proton dissociation enthalpy of acids. In this work we assess the reliability of alchemical derivatives in predicting the proton dissociation enthalpy of a diverse series of mono- and polyprotic molecules. Alchemical derivatives perform remarkably well in ranking the proton affinity of all molecules. Additionally, alchemical derivatives could be use also as a predictive tool because their predictions correlate quite well with calculations based on energy differences and experimental values. Although second-order alchemical derivatives underestimate the dissociation enthalpy, the deviation seems to be almost constant. This makes alchemical derivatives extremely accurate to evaluate the difference in proton affinity between two acid sites of polyprotic molecule. Finally, we show that the reason for the underestimation of the dissociation enthalpy is most likely the contribution of higher-order derivatives.
|
|
|
Navarro, A., Favereau, M., Lorca, A., Olivares, D., & Negrete-Pincetic, M. (2024). Medium-term stochastic hydrothermal scheduling with short-term operational effects for large-scale power and water networks. Appl. Energy, 358, 122554.
Abstract: The high integration of variable renewable sources in electric power systems entails a series of challenges inherent to their intrinsic variability. A critical challenge is to correctly value the water available in reservoirs in hydrothermal systems, considering the flexibility that it provides. In this context, this paper proposes a medium -term multistage stochastic optimization model for the hydrothermal scheduling problem solved with the stochastic dual dynamic programming algorithm. The proposed model includes operational constraints and simplified mathematical expressions of relevant operational effects that allow more informed assessment of the water value by considering, among others, the flexibility necessary for the operation of the system. In addition, the hydrological uncertainty in the model is represented by a vector autoregressive process, which allows capturing spatio-temporal correlations between the different hydro inflows. A calibration method for the simplified mathematical expressions of operational effects is also proposed, which allows a detailed shortterm operational model to be correctly linked to the proposed medium -term linear model. Through extensive experiments for the Chilean power system, the results show that the difference between the expected operating costs of the proposed medium -term model, and the costs obtained through a detailed short-term operational model was only 0.1%, in contrast to the 9.3% difference obtained when a simpler base model is employed. This shows the effectiveness of the proposed approach. Further, this difference is also reflected in the estimation of the water value, which is critical in water shortage situations.
|
|
|
Ramajo, L., Marba, N., Prado, L., Peron, S., Lardies, M. A., Rodriguez-Navarro, A. B., et al. (2016). Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification. Glob. Change Biol., 22(6), 2025–2037.
Abstract: Future ocean acidification (OA) will affect physiological traits of marine species, with calcifying species being particularly vulnerable. As OA entails high energy demands, particularly during the rapid juvenile growth phase, food supply may play a key role in the response of marine organisms to OA. We experimentally evaluated the role of food supply in modulating physiological responses and biomineralization processes in juveniles of the Chilean scallop, Argopecten purpuratus, that were exposed to control (pH similar to 8.0) and low pH (pH similar to 7.6) conditions using three food supply treatments (high, intermediate, and low). We found that pH and food levels had additive effects on the physiological response of the juvenile scallops. Metabolic rates, shell growth, net calcification, and ingestion rates increased significantly at low pH conditions, independent of food. These physiological responses increased significantly in organisms exposed to intermediate and high levels of food supply. Hence, food supply seems to play a major role modulating organismal response by providing the energetic means to bolster the physiological response of OA stress. On the contrary, the relative expression of chitin synthase, a functional molecule for biomineralization, increased significantly in scallops exposed to low food supply and low pH, which resulted in a thicker periostracum enriched with chitin polysaccharides. Under reduced food and low pH conditions, the adaptive organismal response was to trade-off growth for the expression of biomineralization molecules and altering of the organic composition of shell periostracum, suggesting that the future performance of these calcifiers will depend on the trajectories of both OA and food supply. Thus, incorporating a suite of traits and multiple stressors in future studies of the adaptive organismal response may provide key insights on OA impacts on marine calcifiers.
|
|
|
Ramajo, L., Prado, L., Rodriguez-Navarro, A. B., Lardies, M. A., Duarte, C. M., & Lagos, N. A. (2016). Plasticity and trade-offs in physiological traits of intertidal mussels subjected to freshwater-induced environmental variation. Mar. Ecol.-Prog. Ser., 553, 93–109.
Abstract: Environmental gradients play an important role in shaping geographic variability in coastal marine populations. Thus, the ability of organisms to cope with these changes will depend on their potential to acclimatize, or adapt, to these new environmental conditions. We investigated the spatial variability in biological responses shown by Perumytilus purpuratus mussels collected from 2 intertidal areas experiencing contrasting freshwater input influences (river-influenced vs. marine conditions). To highlight the role of plasticity and adaptive potential in biological responses, we performed a reciprocal-transplant experiment and measured relevant phenotypic traits including mortality, growth, calcification, metabolism, and chemical composition of the shell periostra cum. We determined that mussels exposed to river-influenced conditions had increased metabolic rates and reduced growth rates, as compared to mussels experiencing marine conditions (p < 0.05). While the energy investment strategies of the 2 local populations resulted in similar net calcification rates, these rates decreased significantly when mussels were transplanted to the river-influenced site. Stressful conditions at the river-influenced site were evidenced by decreased survivorship across treatments. Freshwater inputs modify the organic composition of the shell periostracum through a significant reduction in polysaccharides. Although our field experiment did not identify specific environmental factors underlying these contrasting phenotypic changes, the results imply that plasticity plays a strong role when P. purpuratus is exposed to some combination of natural (e.g. salinity) and anthropogenic influences (e.g. pollution), and that the lack of exposure to freshwater may promote less tolerant mussels with greater potential for local adaptation.
|
|
|
Ramajo, L., Rodriguez-Navarro, A. B., Duarte, C. M., Lardies, M. A., & Lagos, N. A. (2015). Shifts in shell mineralogy and metabolism of Concholepas concholepas juveniles along the Chilean coast. Mar. Freshw. Res., 66(12), 1147–1157.
Abstract: Along the west coast of South America, from the tropical zone to the Patagonian waters, there is a significant latitudinal gradient in seawater temperature, salinity and carbonate chemistry. These physical-chemical changes in seawater induce morphological and physiological responses in calcifying organisms, which may alter their energy budget and calcification processes. In this study, we study the organism energy maintenance (i.e. metabolic rate) and mineralogical composition of the shell of the juvenile marine snails Concholepas concholepas (Gastropoda: Muricidae), collected from benthic populations located similar to 2000km apart, varies across geographic regions along the Chilean coast. We found that in juvenile snails, the calcite:aragonite ratio in the pallial shell margin (i.e. newly deposited shell) increase significantly from northern to southern populations and this increase in calcite precipitation in the shell of juveniles snails was associated with a decrease in oxygen consumption rates in these populations. Our result suggests that calcite secretion may be favoured when metabolic rates are lowered, as this carbonate mineral phase might be less energetically costly for the organism to precipitate. This result is discussed in relation to the natural process such as coastal upwelling and freshwater inputs that promote geographic variation in levels of pH and carbonate saturation state in seawater along the Chilean coast.
|
|