Home  << 1 >> 
Anabalon, A., Astefanesei, D., & Oliva, J. (2015). Hairy black hole stability in AdS, quantum mechanics on the halfline and holography. J. High Energy Phys., (10), 15 pp.
Abstract: We consider the linear stability of 4dimensional hairy black holes with mixed boundary conditions in Antide Sitter spacetinie. We focus on the mass of scalar fields around the maximally supersymmetric vacuum of the gauged N = 8 supergravity in four dimensions, m(2) = 2l(2). It is shown that the Schrodinger operator on the halfline, governing the S2, H2 or R2 invariant mode around the hairy black hole, allows for nontrivial selfadjoint extensions and each of them corresponds to a class of mixed boundary conditions in the gravitational theory. Discarding the selfadjoint extensions with a negative mode impose a restriction on these boundary conditions. The restriction is given in terms of an integral of the potential in the Schrodinger operator resembling the estimate of Simon for Schrodinger operators on the real line. In the context of AdS/CFT duality, our result has a natural interpretation in terms of the field theory dual effective potential.
Keywords: Black Holes; AdSCFT Correspondence

Anabalon, A., Canfora, F., Giacomini, A., & Oliva, J. (2012). Black holes with primary hair in gauged N=8 supergravity. J. High Energy Phys., (6), 12 pp.
Abstract: In this paper, we analyze the static solutions for the U(1)(4) consistent truncation of the maximally supersymmetric gauged supergravity in four dimensions. Using a new parametrization of the known solutions it is shown that for fixed charges there exist three Possible black hole configurations according to the pattern of symmetry breaking of the (scalars sector of the) Lagrangian. Namely a black hole without scalar fields, a black hole with a primary hair and a black hole with a secondary hair respectively. This is the first, exact, example of a black hole with a primary scalar hair, where both the black hole and the scalar fields are regular on and outside the horizon. The configurations with secondary and primary hair can be interpreted as a spontaneous symmetry breaking of discrete permutation and reflection symmetries of the action. It is shown that there exist a triple point in the thermodynamic phase space where the three solution coexist. The corresponding phase transitions are discussed and the free energies are written explicitly as function of the thermodynamic coordinates in the uncharged case. In the charged case the free energies of the primary hair and the hairless black hole are also given as functions of the thermodynamic coordinates.
Keywords: Black Holes; Supergravity Models

Anabalon, A., Canfora, F., Giacomini, A., & Oliva, J. (2011). Gribov ambiguity in asymptotically AdS threedimensional gravity. Phys. Rev. D, 83(6), 7 pp.
Abstract: In this paper the zero modes of the de Donder gauge FaddeevPopov operator for threedimensional gravity with negative cosmological constant are analyzed. It is found that the AdS(3) vacuum produces (infinitely many) normalizable smooth zero modes of the FaddeevPopov operator. On the other hand, it is found that the BanadosTeitelboimZanelli black hole (including the zero mass black hole) does not generate zero modes. This differs from the usual Gribov problem in QCD where, close to the maximally symmetric vacuum, the FaddeevPopov determinant is positive definite while "far enough'' from the vacuum it can vanish. This suggests that the zero mass BanadosTeitelboimZanelli black hole could be a suitable ground state of threedimensional gravity with negative cosmological constant. Because of the kinematic origin of this result, it also applies for other covariant gravity theories in three dimensions with AdS(3) as maximally symmetric solution, such as new massive gravity and topologically massive gravity. The relevance of these results for supersymmetry breaking is pointed out.

Anabalon, A., Canfora, F., Giacomini, A., & Oliva, J. (2011). Black holes with gravitational hair in higher dimensions. Phys. Rev. D, 84(8), 10 pp.
Abstract: A new class of vacuum black holes for the most general gravity theory leading to second order field equations in the metric in even dimensions is presented. These spacetimes are locally antide Sitter in the asymptotic region, and are characterized by a continuous parameter that does not enter in the conserve charges, nor it can be reabsorbed by a coordinate transformation: it is therefore a purely gravitational hair. The black holes are constructed as a warped product of a twodimensional spacetime, which resembles the rt plane of the BanadosTeitelboimZanelli black hole, times a warp factor multiplying the metric of a D – 2dimensional Euclidean base manifold, which is restricted by a scalar equation. It is shown that all the Noether charges vanish. Furthermore, this is consistent with the Euclidean action approach: even though the black hole has a finite temperature, both the entropy and the mass vanish. Interesting examples of base manifolds are given in eight dimensions which are products of Thurston geometries, giving then a nontrivial topology to the black hole horizon. The possibility of introducing a torsional hair for these solutions is also discussed.

Anabalon, A., Cisterna, A., & Oliva, J. (2014). Asymptotically locally AdS and flat black holes in Horndeski theory. Phys. Rev. D, 89(8), 9 pp.
Abstract: In this paper we construct asymptotically locally AdS and flat black holes in the presence of a scalar field whose kinetic term is constructed out from a linear combination of the metric and the Einstein tensor. The field equations as well as the energymomentum tensor are second order in the metric and the field, therefore the theory belongs to the ones defined by Horndeski. We show that in the presence of a cosmological term in the action, it is possible to have a real scalar field in the region outside the event horizon. The solutions are characterized by a single integration constant, the scalar field vanishes at the horizon and it contributes to the effective cosmological constant at infinity. We extend these results to the topological case. The solution is disconnected from the maximally symmetric AdS background, however, within this family there exists a gravitational soliton which is everywhere regular. This soliton is therefore used as a background to define a finite Euclidean action and to obtain the thermodynamics of the black holes. For a certain region in the space of parameters, the thermodynamic analysis reveals a critical temperature at which a HawkingPage phase transition between the black hole and the soliton occurs. We extend the solution to arbitrary dimensions greater than 4 and show that the presence of a cosmological term in the action allows one to consider the case in which the standard kinetic term for the scalar it is not present. In such a scenario, the solution reduces to an asymptotically flat black hole.

Anabalon, A., & Oliva, J. (2012). Exact hairy black holes and their modification to the universal law of gravitation. Phys. Rev. D, 86(10), 5 pp.
Abstract: In this paper two things are done. First, it is pointed out the existence of exact asymptotically flat, spherically symmetric black holes when a selfinteracting, minimally coupled scalar field is the source of the Einstein equations in four dimensions. The scalar field potential is recently found to be compatible with the hairy generalization of the PlebanskiDemianski solution of general relativity. This paper describes the spherically symmetric solutions that smoothly connect the Schwarzschild black hole with its hairy counterpart. The geometry and scalar field are everywhere regular except at the usual Schwarzschildlike singularity inside the black hole. The scalar field energy momentum tensor satisfies the nullenergy condition in the static region of spacetime. The first law holds when the parameters of the scalar field potential are fixed under thermodynamical variation. Second, it is shown that an extra, dimensionless parameter, present in the hairy solution, allows to modify the gravitational field of a spherically symmetric black hole in a remarkable way. When the dimensionless parameter is increased, the scalar field generates a flat gravitational potential that, however, asymptotically matches the Schwarzschild gravitational field. Finally, it is shown that a positive cosmological constant can render the scalar field potential convex if the parameters are within a specific rank.
