Home | << 1 >> |
Osores, S. J. A., Lagos, N. A., Martin, V. S., Manriquez, P. H., Vargas, C. A., Torres, R., et al. (2017). Plasticity and inter-population variability in physiological and life-history traits of the mussel Mytilus chilensis: A reciprocal transplant experiment. J. Exp. Mar. Biol. Ecol., 490, 1–12.
Abstract: Geographically widespread species must cope with environmental differences between habitats. Information concerning geographic variations in response to climate variability is critical because many morphological, life history and physiological traits show variation across space. Reciprocal transplant experiments have shown to be relevant to evaluate the role of phenotypic plasticity and potential local adaptation in ecophysiological responses when coping with environmental variability. In this study, we characterize through reciprocal transplant experiments the reaction norms of morphological, biochemical, physiological and life-history traits between two intertidal populations of the socioeconomically important mussel Mytilus chilensis, inhabiting contrasting local environments (estuarine vs coastal habitats). We found a gradient in phenotypic plasticity with plastic trait responses in metabolic, ingestion and clearance rates, and in HsP(70) gene expression, and some traits with responses more canalized as growth and calcification rates. This emphasizes that responses not only vary across different local populations but also in different traits in M. chilensis, thus it is difficult to establish an overall trend of the responses at integrated organismal level. Moreover, the synergistic interaction of factors such as salinity and carbonate system parameters evaluated make it necessary to study the response at the population level with emphasis on benthic species important in aquaculture. Finally, field studies such as this one are useful for documenting the patterns of traits variation that occur in nature, identifying possible causes of such variation, and generating testable hypotheses for future controlled experiments. (C) 2017 Elsevier B.V. All rights reserved.
|
Osores, S. J. A., Ruz, G. A., Opitz, T., & Lardies, M. A. (2018). Discovering divergence in the thermal physiology of intertidal crabs along latitudinal gradients using an integrated approach with machine learning. J. Therm. Biol., 78, 140–150.
Abstract: In intertidal marine crustaceans, phenotypic variation in physiological and life-history traits is pervasive along latitudinal dines. However, organisms have complex phenotypes, and their traits do not vary independently but rather interact differentially between them, effect that is caused by genetic and/or environmental forces. We evaluated the geographic variation in phenotypic integration of three marine crab species that inhabit different vertical thermal microhabitats of the intertidal zone. We studied seven populations of each species along a latitudinal gradient that spans more than 3000 km of the Chilean coast. Specifically we measured nine physiological traits that are highly related to thermal physiology. Of the nine traits, we selected four that contributed significantly to the observed geographical variation among populations; this variation was then evaluated using mixed linear models and an integrative approach employing machine learning. The results indicate that patterns of physiological variation depend on species vertical microhabitat, which may be subject to chronic or acute environmental variation. The species that inhabit the high- intertidal sites (i.e., exposed to chronic variation) better tolerated thermal stress compared with populations that inhabit the lower intertidal. While those in the low-intertidal only face conditions of acute thermal variation, using to a greater extent the plasticity to face these events. Our main results reflect that (1) species that inhabit the high-intertidal maintain a greater integration between their physiological traits and present lower plasticity than those that inhabit the low-intertidal. (2) Inverse relationship that exists between phenotypic plasticity and phenotypic integration of the physiological traits identified, which could help optimize energy resources. In general, the study of multiple physiological traits provides a more accurate picture of how the thermal traits of organisms vary along temperature gradients especially when exposed to conditions close to tolerance limits.
|