|
Espinoza-Retamal, J. I., Brahm, R., Petrovich, C., Jordán, A., Stefánsson, G., Sedaghati, E., et al. (2023). The Aligned Orbit of the Eccentric Proto Hot Jupiter TOI-3362b. Astrophys. J. Lett., 958(2), L20.
Abstract: High-eccentricity tidal migration predicts the existence of highly eccentric proto hot Jupiters on the “tidal circularization track,” meaning that they might eventually become hot Jupiters, but that their migratory journey remains incomplete. Having experienced moderate amounts of tidal evolution of their orbital elements, proto hot Jupiter systems can be powerful test beds for the underlying mechanisms of eccentricity growth. Notably, they may be used for discriminating between variants of high-eccentricity migration, each predicting a distinct evolution of misalignment between the star and the planet's orbit. We constrain the spin-orbit misalignment of the proto hot Jupiter TOI-3362b with high-precision radial-velocity observations using ESPRESSO at Very Large Telescope. The observations reveal a sky-projected obliquity lambda=1.2+2.8(degrees)/-2.7 and constrain the orbital eccentricity to e = 0.720 +/- 0.016, making it one of the most eccentric gas giants for which the obliquity has been measured. Although the large eccentricity and the striking orbit alignment of the planet are puzzling, we suggest that ongoing coplanar high-eccentricity migration driven by a distant companion is a possible explanation for the system's architecture. This distant companion would need to reside beyond 5 au at 95% confidence to be compatible with the available radial-velocity observations.
|
|
|
Jenkins, J. S., Diaz, M. R., Kurtovic, N. T., Espinoza, N., Vines, J. I., Rojas, P. A. P., et al. (2020). An ultrahot Neptune in the Neptune desert. Nat. Astron., 4(12), 1148–1157.
Abstract: About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet(1,2). All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R-circle plus), or apparently rocky planets smaller than 2 R-circle plus. Such lack of planets of intermediate size (the `hot Neptune desert') has been interpreted as the inability of low-mass planets to retain any hydrogen/ helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R-circle plus and a mass of 29 M-circle plus, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite(3) revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet's mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0(-2.9)(+2.7) % of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this `ultrahot Neptune' managed to retain such an envelope. Follow-up observations of the planet's atmosphere to better understand its origin and physical nature will be facilitated by the star's brightness (V-mag = 9.8).
|
|
|
Sedaghati, E., Jordan, A., Brahm, R., Munoz, D. J., Petrovich, C., & Hobson, M. J. (2023). Orbital Alignment of the Eccentric Warm Jupiter TOI-677 b. Astron. J., 166(3), 130.
Abstract: Warm Jupiters lay out an excellent laboratory for testing models of planet formation and migration. Their separation from the host star makes tidal reprocessing of their orbits ineffective, which preserves the orbital architectures that result from the planet-forming process. Among the measurable properties, the orbital inclination with respect to the stellar rotational axis, stands out as a crucial diagnostic for understanding the migration mechanisms behind the origin of close-in planets. Observational limitations have made the procurement of spin-orbit measurements heavily biased toward hot Jupiter systems. In recent years, however, high-precision spectroscopy has begun to provide obliquity measurements for planets well into the warm Jupiter regime. In this study, we present Rossiter-McLaughlin (RM) measurements of the projected obliquity angle for the warm Jupiter TOI-677 b using ESPRESSO at the VLT. TOI-677 b exhibits an extreme degree of alignment (lambda = 0.3 +/- 1.3 deg), which is particularly puzzling given its significant eccentricity (e approximate to 0.45). TOI-677 b thus joins a growing class of close-in giants that exhibit large eccentricities and low spin-orbit angles, which is a configuration not predicted by existing models. We also present the detection of a candidate outer brown dwarf companion on an eccentric, wide orbit (e approximate to 0.4 and P approximate to 13 yr). Using simple estimates, we show that this companion is unlikely to be the cause of the unusual orbit of TOI-677 b. Therefore, it is essential that future efforts prioritize the acquisition of RM measurements for warm Jupiters.
|
|