|
Garcia-Huidobro, M. R., Poupin, M. J., Urrutia, C., Rodriguez-Navarro, A. B., Grenier, C., Vivanco, J. F., et al. (2021). An intrapopulational study of organic compounds and biomechanical properties of the shell of the Antarctic bivalve Laternula elliptica (P. P. King, 1832) at King George Island. Polar Biol., 44, 1343–1352.
Abstract: Laternula elliptica is a key bivalve species and widely distributed around the Antarctic continent. This bivalve has been the study subject in several studies centered on ecological, physiological, biochemical, and behavioral patterns. However, little is known about the chemistry and the biomechanical properties of the shells of this mollusk. Here, we present the first report of the intra-population variability in the organic composition and mechanical properties of L. elliptica shells. Further, we analyze different morphological traits and their association with the metabolism of a population of L. elliptica from King George Island, Western Antarctic Peninsula. The summer metabolic rates and the hepatosomatic index values indicate good health conditions of this clam's population. Shell periostracum chemistry is quite similar to bivalves from temperate regions, but the relative amount of protein increased ca. five-fold in shells of L. elliptica. The microhardness is approximately 32% lower than in bivalves from temperate regions. Our characterization of the L. elliptica shells suggests that periostracum chemistry could be specially fitted to avoid shell carbon exposure to dissolution (e.g., in corrosive acidified seawater). In contrast, the reduction in shell hardness may result from prioritizing behavioral (burial) and shell repairing strategies to confront biological (predators) and physical disturbances (e.g., ice scouring). Similar studies in other Antarctic mollusks will help understand the role of shell structure and function in confronting projected climate changes in the Antarctic ocean.
|
|
|
Ramajo, L., Fernandez, C., Nunez, Y., Caballero, P., Lardies, M. A., & Poupin, M. J. (2019). Physiological responses of juvenile Chilean scallops (Argopecten purpuratus) to isolated and combined environmental drivers of coastal upwelling. ICES J. Mar. Sci., 76(6), 1836–1849.
Abstract: Coastal biota is exposed to continuous environmental variability as a consequence of natural and anthropogenic processes. Responding to heterogeneous conditions requires the presence of physiological strategies to cope with the environment. Ecosystems influenced by upwelling endure naturally cold, acidic and hypoxic conditions, nevertheless they sustain major fisheries worldwide. This suggests that species inhabiting upwelling habitats possess physiological adaptations to handle high environmental variability. Here, we assessed the impact of the main upwelling drivers (temperature, pH and oxygen) in isolation and combined on eco-physiological responses of Chilean scallop Argopecten purpuratus. A. purpuratus responded to hypoxia by increasing their metabolic performance to maintain growth and calcification. Calcification was only affected by pH and increased under acidic conditions. Further, A. purpuratus juveniles prioritized calcification at the expense of growth under upwelling conditions. Increasing temperature had a significant impact by enhancing the physiological performance of A. purpuratus juveniles independently of oxygen and pH conditions, but this was associated with earlier and higher mortalities. Our results suggest that A. purpuratus is acclimated to short-term colder, acidic and hypoxic conditions, and provide important information of how this species responds to the heterogeneous environment of upwelling, which is significantly relevant in the climatic context of upwelling intensification.
|
|
|
Ramajo, L., Marba, N., Prado, L., Peron, S., Lardies, M. A., Rodriguez-Navarro, A. B., et al. (2016). Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification. Glob. Change Biol., 22(6), 2025–2037.
Abstract: Future ocean acidification (OA) will affect physiological traits of marine species, with calcifying species being particularly vulnerable. As OA entails high energy demands, particularly during the rapid juvenile growth phase, food supply may play a key role in the response of marine organisms to OA. We experimentally evaluated the role of food supply in modulating physiological responses and biomineralization processes in juveniles of the Chilean scallop, Argopecten purpuratus, that were exposed to control (pH similar to 8.0) and low pH (pH similar to 7.6) conditions using three food supply treatments (high, intermediate, and low). We found that pH and food levels had additive effects on the physiological response of the juvenile scallops. Metabolic rates, shell growth, net calcification, and ingestion rates increased significantly at low pH conditions, independent of food. These physiological responses increased significantly in organisms exposed to intermediate and high levels of food supply. Hence, food supply seems to play a major role modulating organismal response by providing the energetic means to bolster the physiological response of OA stress. On the contrary, the relative expression of chitin synthase, a functional molecule for biomineralization, increased significantly in scallops exposed to low food supply and low pH, which resulted in a thicker periostracum enriched with chitin polysaccharides. Under reduced food and low pH conditions, the adaptive organismal response was to trade-off growth for the expression of biomineralization molecules and altering of the organic composition of shell periostracum, suggesting that the future performance of these calcifiers will depend on the trajectories of both OA and food supply. Thus, incorporating a suite of traits and multiple stressors in future studies of the adaptive organismal response may provide key insights on OA impacts on marine calcifiers.
|
|
|
Ramajo, L., Prado, L., Rodriguez-Navarro, A. B., Lardies, M. A., Duarte, C. M., & Lagos, N. A. (2016). Plasticity and trade-offs in physiological traits of intertidal mussels subjected to freshwater-induced environmental variation. Mar. Ecol.-Prog. Ser., 553, 93–109.
Abstract: Environmental gradients play an important role in shaping geographic variability in coastal marine populations. Thus, the ability of organisms to cope with these changes will depend on their potential to acclimatize, or adapt, to these new environmental conditions. We investigated the spatial variability in biological responses shown by Perumytilus purpuratus mussels collected from 2 intertidal areas experiencing contrasting freshwater input influences (river-influenced vs. marine conditions). To highlight the role of plasticity and adaptive potential in biological responses, we performed a reciprocal-transplant experiment and measured relevant phenotypic traits including mortality, growth, calcification, metabolism, and chemical composition of the shell periostra cum. We determined that mussels exposed to river-influenced conditions had increased metabolic rates and reduced growth rates, as compared to mussels experiencing marine conditions (p < 0.05). While the energy investment strategies of the 2 local populations resulted in similar net calcification rates, these rates decreased significantly when mussels were transplanted to the river-influenced site. Stressful conditions at the river-influenced site were evidenced by decreased survivorship across treatments. Freshwater inputs modify the organic composition of the shell periostracum through a significant reduction in polysaccharides. Although our field experiment did not identify specific environmental factors underlying these contrasting phenotypic changes, the results imply that plasticity plays a strong role when P. purpuratus is exposed to some combination of natural (e.g. salinity) and anthropogenic influences (e.g. pollution), and that the lack of exposure to freshwater may promote less tolerant mussels with greater potential for local adaptation.
|
|
|
Ramajo, L., Rodriguez-Navarro, A. B., Duarte, C. M., Lardies, M. A., & Lagos, N. A. (2015). Shifts in shell mineralogy and metabolism of Concholepas concholepas juveniles along the Chilean coast. Mar. Freshw. Res., 66(12), 1147–1157.
Abstract: Along the west coast of South America, from the tropical zone to the Patagonian waters, there is a significant latitudinal gradient in seawater temperature, salinity and carbonate chemistry. These physical-chemical changes in seawater induce morphological and physiological responses in calcifying organisms, which may alter their energy budget and calcification processes. In this study, we study the organism energy maintenance (i.e. metabolic rate) and mineralogical composition of the shell of the juvenile marine snails Concholepas concholepas (Gastropoda: Muricidae), collected from benthic populations located similar to 2000km apart, varies across geographic regions along the Chilean coast. We found that in juvenile snails, the calcite:aragonite ratio in the pallial shell margin (i.e. newly deposited shell) increase significantly from northern to southern populations and this increase in calcite precipitation in the shell of juveniles snails was associated with a decrease in oxygen consumption rates in these populations. Our result suggests that calcite secretion may be favoured when metabolic rates are lowered, as this carbonate mineral phase might be less energetically costly for the organism to precipitate. This result is discussed in relation to the natural process such as coastal upwelling and freshwater inputs that promote geographic variation in levels of pH and carbonate saturation state in seawater along the Chilean coast.
|
|