Campos, J. L., del Rio, A. V., Pedrouso, A., Raux, P., Giustinianovich, E. A., & Mosquera-Corral, A. (2017). Granular biomass floatation: A simple kinetic/stoichiometric explanation. Chem. Eng. J., 311, 63–71.
Abstract: Floatation events are commonly observed in anammox, denitrifying and anaerobic granular systems mostly subjected to overloading conditions. Although several operational strategies have been proposed to avoid floatation of granular biomass, until now, there is no consensus about the conditions responsible for this phenomenon. In the present study, a simple explanation based on kinetic and stoichiometric principles defining the aforementioned processes is provided. The operational zones corresponding to evaluated parameters where risk of floatation exists are defined as a function of substrate concentration in the bulk liquid and the radius of the granule. Moreover, the possible control of biomass floatation by changing the operating temperature was analyzed. Defined operational zones and profiles fit data reported in literature for granular biomass floatation events. From the study the most influencing parameter on floatation occurrence has been identified as the substrate concentration in the bulk media. (C) 2016 Elsevier B.V. All rights reserved.
|
Raux, P. S., Gravelle, S., & Dumais, J. (2020). Design of a unidirectional water valve in Tillandsia. Nat. Commun., 11(1), 7 pp.
Abstract: The bromeliad Tillandsia landbeckii thrives in the Atacama desert of Chile using the fog captured by specialized leaf trichomes to satisfy its water needs. However, it is still unclear how the trichome of T. landbeckii and other Tillandsia species is able to absorb fine water droplets during intermittent fog events while also preventing evaporation when the plant is exposed to the desert's hyperarid conditions. Here, we explain how a 5800-fold asymmetry in water conductance arises from a clever juxtaposition of a thick hygroscopic wall and a semipermeable membrane. While absorption is achieved by osmosis of liquid water, evaporation under dry external conditions shifts the liquid-gas interface forcing water to diffuse through the thick trichome wall in the vapor phase. We confirm this mechanism by fabricating artificial composite membranes mimicking the trichome structure. The reliance on intrinsic material properties instead of moving parts makes the trichome a promising basis for the development of microfluidics valves.
|