Home  << 1 >> 
Chicoisne, R., Espinoza, D., Goycoolea, M., Moreno, E., & Rubio, E. (2012). A New Algorithm for the OpenPit Mine Production Scheduling Problem. Oper. Res., 60(3), 517–528.
Abstract: For the purpose of production scheduling, openpit mines are discretized into threedimensional arrays known as block models. Production scheduling consists of deciding which blocks should be extracted, when they should be extracted, and what to do with the blocks once they are extracted. Blocks that are close to the surface should be extracted first, and capacity constraints limit the production in each time period. Since the 1960s, it has been known that this problem can be cast as an integer programming model. However, the large size of some real instances (310 million blocks, 1520 time periods) has made these models impractical for use in real planning applications, thus leading to the use of numerous heuristic methods. In this article we study a wellknown integer programming formulation of the problem that we refer to as CPIT. We propose a new decomposition method for solving the linear programming relaxation (LP) of CPIT when there is a single capacity constraint per time period. This algorithm is based on exploiting the structure of the precedenceconstrained knapsack problem and runs in O(mn log n) in which n is the number of blocks and m a function of the precedence relationships in the mine. Our computations show that we can solve, in minutes, the LP relaxation of realsized mineplanning applications with up to five million blocks and 20 time periods. Combining this with a quick rounding algorithm based on topological sorting, we obtain integer feasible solutions to the more general problem where multiple capacity constraints per time period are considered. Our implementation obtains solutions within 6% of optimality in seconds. A second heuristic step, based on local search, allows us to find solutions within 3% in one hour on all instances considered. For most instances, we obtain solutions within 12% of optimality if we let this heuristic run longer. Previous methods have been able to tackle only instances with up to 150,000 blocks and 15 time periods.

Reus, L., Belbeze, M., Feddersen, H., & Rubio, E. (2018). Extraction Planning Under Capacity Uncertainty at the Chuquicamata Underground Mine. Interfaces, 48(6), 543–555.
Abstract: We propose an extraction schedule for the Chuquicamata underground copper mine in Chile. The schedule maximizes profits while adhering to all operational and geomechanical requirements involved in proper removal of the material. We include extraction capacity uncertainties due to failure in equipment, specifically to the overland conveyor, which we find to be the most critical component in the extraction process. First we present the extraction plan based on a deterministic model, which does not assume uncertainty in the extraction capacity and represents the solution that the mine can implement without using the results of this study. Then we extend this model to a stochastic setting by generating different scenarios for capacity values in subsequent periods. We construct a multistage model that handles economic downside risk arising from this uncertainty by penalizing plans that deviate from an ex ante profit target in one or more scenarios. Simulation results show that a stochasticbased solution can achieve the same expected profits as the deterministicbased solution. However, the earnings of the stochasticbased solution average 5% more for scenarios in which earnings are below the 10th percentile. If we choose a target 2% below the expected profit obtained by the deterministicbased solution, this average increases from 5% to 9%.
