| 
Citations
 | 
   web
Valle, M. A., & Ruz, G. A. (2019). Market Basket Analysis Using Boltzmann Machines. In Lecture Notes in Computer Sciences (Vol. 11730).
toggle visibility
Ruz, G. A., & Henriquez, P. A. (2019). Random Vector Functional Link with Naive Bayes for Classification Problems of Mixed Data. In IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI) (Vol. 2019).
toggle visibility
Valle, M. A., Ruz, G. A., & Rica, S. (2018). Transactional Database Analysis by Discovering Pairwise Interactions Strengths. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (Vol. 2018).
toggle visibility
Henriquez, P. A., & Ruz, G. A. (2018). Twitter Sentiment Classification Based on Deep Random Vector Functional Link. In 2018 International Joint Conference on Neural Networks (IJCNN).
toggle visibility
Ruz, G. A., Goles, E., & Sene, S. (2018). Reconstruction of Boolean Regulatory Models of Flower Development Exploiting an Evolution Strategy. In 2018 IEEE Congress on Evolutionary Computation (CEC) (pp. 1–8).
toggle visibility
Mascareno, A., Henriquez, P. A., Billi, M., & Ruz, G. A. (2020). A Twitter-Lived Red Tide Crisis on Chiloe Island, Chile: What Can Be Obtained for Social-Ecological Research through Social Media Analysis? Sustainability, 12(20), 38 pp.
toggle visibility
Cho, A. D., Carrasco, R. A., Ruz, G. A., & Ortiz, J. L. (2020). Slow Degradation Fault Detection in a Harsh Environment. IEEE Access, 8, 175904–175920.
toggle visibility
Ruz, G. A., Henriquez, P. A., & Mascareno, A. (2020). Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers. Futur. Gener. Comp. Syst., 106, 92–104.
toggle visibility
Timmermann, T., Gonzalez, B., & Ruz, G. A. (2020). Reconstruction of a gene regulatory network of the induced systemic resistance defense response in Arabidopsis using boolean networks. BMC Bioinformatics, 21(1), 16 pp.
toggle visibility
Goles, E., Lobos, F., Ruz, G. A., & Sene, S. (2020). Attractor landscapes in Boolean networks with firing memory: a theoretical study applied to genetic networks. Nat. Comput., 19(2), 295–319.
toggle visibility
Timmermann, T., Poupin, M. J., Vega, A., Urrutia, C., Ruz, G. A., & Gonzalez, B. (2019). Gene networks underlying the early regulation of Paraburkholderia phytofirmans PsJN induced systemic resistance in Arabidopsis. PLoS One, 14(8), 24 pp.
toggle visibility
Di Genova, A., Ruz, G. A., Sagot, M. F., & Maass, A. (2018). Fast-SG: an alignment-free algorithm for hybrid assembly. GigaScience, 7(5), 15 pp.
toggle visibility
Valle, M. A., Ruz, G. A., & Rica, S. (2019). Market basket analysis by solving the inverse Ising problem: Discovering pairwise interaction strengths among products. Physica A, 524, 36–44.
toggle visibility
Henriquez, P. A., & Ruz, G. A. (2019). Noise reduction for near-infrared spectroscopy data using extreme learning machines. Eng. Appl. Artif. Intell., 79, 13–22.
toggle visibility
Mascareno, A., Cordero, R., Azocar, G., Billi, M., Henriquez, P. A., & Ruz, G. A. (2018). Controversies in social-ecological systems: lessons from a major red tide crisis on Chiloe Island, Chile. Ecol. Soc., 23(4), 25 pp.
toggle visibility
Osores, S. J. A., Ruz, G. A., Opitz, T., & Lardies, M. A. (2018). Discovering divergence in the thermal physiology of intertidal crabs along latitudinal gradients using an integrated approach with machine learning. J. Therm. Biol., 78, 140–150.
toggle visibility
Canals, C., Goles, E., Mascareno, A., Rica, S., & Ruz, G. A. (2018). School Choice in a Market Environment: Individual versus Social Expectations. Complexity, 3793095, 11 pp.
toggle visibility
Ruz, G. A., & Araya-Diaz, P. (2018). Predicting Facial Biotypes Using Continuous Bayesian Network Classifiers. Complexity, 4075656, 14 pp.
toggle visibility
Ruz, G. A., Zuniga, A., & Goles, E. (2018). A Boolean network model of bacterial quorum-sensing systems. Int. J. Data Min. Bioinform., 21(2), 123–144.
toggle visibility
Henriquez, P. A., & Ruz, G. A. (2018). A non-iterative method for pruning hidden neurons in neural networks with random weights. Appl. Soft. Comput., 70, 1109–1121.
toggle visibility