|
Chavez-Vásconez, R., Arévalo, C., Torres, Y., Reyes-Valenzuela, M., Sauceda, S., Salvo, C., et al. (2023). Understanding the synergetic effects of mechanical milling and hot pressing on bimodal microstructure and tribo-mechanical behavior in porous Ti structures. J. Mater. Res. Technol., 27, 5243–5256.
Abstract: The utilization of porous biomedical implants featuring a bimodal microstructure has garnered substantial interest within the scientific community. This study delves into the intricate interplay between processing parameters, microstructural attributes, and the tribo-mechanical performance of titanium grade 4, showcasing its potential to serve as implants to address compromised cortical bone tissue. The investigation meticulously examines the impact of milling duration (10 and 20 h), proportion of milled powder (50 and 75 wt%), and the volume fraction of space-holding agents (40-60 vol% NaCl) on the resulting characteristics of the bimodal microstructure, which plays a crucial role in achieving optimal biomechanical equilibrium. The Vickers microhardness, conventional and instrumented (P-h curves), and the wear behavior (ball-on disk) are discussed in terms of bimodal microstructure distribution, particle size and porosity level inherent to the fabrication conditions (mechanical milling + space-holder + hot-pressing). In general terms, milling time and milled powder fraction were the most influent parameters on the final properties of the materials. With the processing route used, the achieved microhardness values and wear behavior are comparable with those obtained by means of surface modifications or alloys. The Young's moduli obtained were in the range of 30-50 GPa, which could help to reduce the shielding phenomenon, while presenting a good mechanical resistance and wear behavior. In light of these findings, the fabricated specimen, composed of 75 wt% milled powder subjected to a 10-h milling duration, supplemented by a 60 vol% fraction of NaCl, emerges as a prime candidate manifesting superior biomechanical equilibrium. This judicious configuration exhibits a promising trajectory for its application in bone replacement endeavors.
|
|
|
Rendon, R. C., Salvo, C., Sepulveda, E., Arulraj, A., Sanhueza, F., Rodriguez, J. J., et al. (2022). Evaluation of Structural and Functional Properties of La0.6Sr0.4MnO3 Perovskite Prepared by the Fast Solution Combustion Approach. Catalysts, 12(12), 1636.
Abstract: A series of La0.6Sr0.4MnO3 (LSM) perovskite was made using the rapid solution combustion method, which was calcined by varying the temperatures. In order to determine how the calcination temperature affected the nanopowders produced and calcined at various temperatures, their microstructural, morphological, compositional, optical, and electrical properties were analyzed using corresponding characterization tools. The XRD results showed the coexistence of the rhombohedral polymorphs R-3c and Pm-3m for the perovskite phase under a calcination temperature of 1400 degrees C, which were eliminated with increased calcination temperature. The average grain size was found to increase with increasing calcination temperature. The EDS analysis showed better agreement of the stoichiometry with the theoretical composition. The apparent porosity decreased with increasing temperature due to the coalescence of sintering pores. The sample obtained after calcination at 1500 degrees C showed 10.3% porosity. The hardness also improved with increasing calcination temperature and reached a maximum value of 0.4 GPa, which matched the bulk density. A similar trend was observed in the resistivity studies as a function of temperature, and all the samples exhibited a low resistivity of similar to 1.4 Omega.cm in the temperature range of 500-600 degrees C. The optical characterization showed broad absorption at 560-660 nm and bandwidth values between 3.70 and 3.95 eV, according to the applied heat treatment.
|
|
|
Rendon, R. C., Udayabhaskar, R., Salvo, C., Sepulveda, E., Rodriguez, J. J., Camurri-Porro, C., et al. (2022). Evaluation of La0.8Sr0.2MnO3 perovskite prepared by fast solution combustion. Ceram. Int., 48(23), 35100–35107.
Abstract: La0.8Sr0.2MnO3 (LSM) perovskite as oxygen electrode material for the reversible solid oxide fuel cells (ReSOFC) was synthesized by the fast solution combustion method and assessed for subsequent calcination influence. The microstructural, morphological, compositional and optical properties of the obtained material were analyzed with X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM) coupled with an energy-dispersive X-ray spectroscopy detector (EDS) and UV-visible spectroscopy techniques. The XRD results showed the coexistence of rhombohedral R-3c and Pm-3m polymorphs for the perovskite phase, with a decreased fraction of the cubic phase as the temperature and/or time used for the calcination were increased. The HR-TEM images confirmed the existence of the R-3c and Pm-3m polymorphs for the sample subjected to calcination at 1300 degrees C, showing that the rapid combustion method did not allow the pure formation of the La0.8Sr0.2MnO3 phase for the calcination temperatures below 1400 degrees C, due to the swiftness of the combustion synthesis 500 degrees C for 5 min. The average grain size was found to be increased with the calcination time. The EDS analysis depicted a better agreement in stoichiometry with the theoretical composition. The apparent porosity was decreased with the increase in the temperature and calcination time due to the coalescence of the sintering pores. The sample obtained after the calcination at 1400 degrees C for 8 h exhibited 1.6% of porosity. The hardness was improved with the higher calcination time and temperature and reached a maximum value of 5.7 GPa that merely matched the bulk density. A similar trend was observed in the temperature dependence resistivity studies and all the samples presented a low resistivity of similar to 1.2 Omega cm in the temperature range of 600-700 degrees C. The optical characterization exhibited a broad absorption in 560-660 nm.
|
|
|
Sepulveda, E., Mangalaraja, R. V., Troncoso, L., Jimenez, J., Salvo, C., & Sanhueza, F. (2022). Effect of barium on LSGM electrolyte prepared by fast combustion method for solid oxide fuel cells (SOFC). MRS Adv., Early Access.
Abstract: In this work, La0.85Sr0.15-xBaxGa0.85Mg0.15O3-delta (LSBGM), with 0 <= x <= 0.075, were prepared as electrolytes for solid oxide fuel cells applications. The effect of barium and sintering temperature on the structure and electrical properties was studied. A fast combustion method was used, starting with nitrate salts and citric acid as fuel. The XRD spectra showed two main phases corresponding to LSGM orthorhombic (space group Imma) and LSGM-cubic (space group Pm-3 m). From literature, both structures are reported as high oxygen ion conductive species, but normally, they are not reported to appear together. Major secondary phases were LaSrGaO4, BaLaGaO4, and BaLaGaO7. SEM revealed a material with low porosity, indicating incomplete densification. The sample La0.85Sr0.75Ba0.075Ga0.85Mg0.15O3-delta showed a conductivity of 0.016 and 0.058 S cm(-1) at 600 degrees C and 800 degrees C, respectively. This means an improvement of 34% compared to the non-barium sample La0.85Sr0.15Ga0.85Mg0.15O3-delta at 600 degrees C. Thus, this composition could be used in SOFC.
|
|
|
Sepulveda, E., Mangalaraja, R. V., Udayabhaskar, R., Cobo, R., Berzal, M. E., Jimenez, J., et al. (2022). Preparation of LSGM electrolyte via fast combustion method and analysis of electrical properties for ReSOC. J. Electroceramics, 49(2), 85–93.
Abstract: In this work, we prepared La1 – xSrxGa1-yMgyO3 (LSGM) by the fast combustion method and assessed the electrical properties with respect to the composition and sintering temperature (1200, 1300, and 1400 degrees C by 6 h) as an electrolyte material for the reversible solid oxide cells (ReSOCs). For the preparation of samples, two different fuels, such as tartaric acid (TA) and citric acid (CA), with corresponding nitrate salts as precursors, were adopted for the fast combustion method (at 500 degrees C for 10 min). From the X-ray diffractograms, two main phases corresponding to LSGM orthorhombic (space group Imma) and LSGM-cubic (space group Pm-3 m) were identified. From the literature, both structures are reported as high oxygen ion conductive species, but normally they are not reported to appear together. Additionally, in some cases, an isolating (secondary) phase of LaSrGaO4 in a low concentration < 1.98% was observed. The scanning electron microscopy (SEM) studies on samples sintered at 1200 and 1300 degrees C revealed the smaller grain size and irregular morphology. The SEM micrographs depicted a well-defined superficial morphology with less porosity for the samples sintered at 1400 degrees C. For comparative analysis, the conductivity (S.cm(- 1)) was measured at varying temperatures (300-800 degrees C) for the samples sintered at 1300 and 1400 degrees C. Because of the large number of insulating phases produced by the incomplete sintering process, the samples sintered at 1300 degrees C had lower conductivities. A higher conductivity of 0.125 S.cm(- 1) was observed for La0.80Sr0.20Ga0.80Mg0.20O3 (LSGM), which was obtained using the citric acid (sintered at 1400 degrees C), which is in the range of earlier reported similar studies. The observed variation in the conductivity with respect to different phases of LSGM, the influence of the secondary phase, and the wt% of the constituents of LSGM are discussed.
|
|
|
Shanmugaraj, K., Vinoth, V., Pugazhenthiran, N., Valdes, H., Salvo, C., Sepulveda, E., et al. (2023). Ferrihydrite- Graphene oxide foams as an efficient adsorbent for Arsenic (III) removal from an aqueous solution. Inorg. Chem. Commun., 153, 110892.
Abstract: We report the synthesis of a new range of ferrihydrite-graphene oxide (FH-GO) foams using chitosan as cross linker, with varying iron content (5 wt%, 10 wt%, and 20 wt% of FH) as highly efficient adsorbents for the removal of arsenic (III) (As(III)) in an aqueous solution. The sonochemical methods were adopted to synthesize various FH-GO foams and were further characterized by XRD, SEM, TEM, FTIR, Raman, and XPS techniques. The synthesized materials were used for the removal of As(III) in both batch and fixed bed absorbent column methods. The adsorption isotherm results showed that the 10 wt% of FH-GO foams demonstrated a superior adsorbent for the As(III) with high adsorption capacities than that of the other two FH-GO foams (5 wt% and 20 wt% of FH). Moreover, 10 wt% of FH-GO foams was also demonstrated to be nearly a complete (>98.4%) removal of As(III) ions at neutral pH 7. The adsorption isotherm fitted very well with the Langmuir model with the highest accuracy data for all the synthesized adsorbent materials. In addition, the fixed bed absorbent column method was also adopted for the removal of As(III) ions in the water sample, which showed > 99.2% of removal efficiency. The outstanding adsorption capabilities, along with their easy and low-cost synthesis, make these kinds of adsorbents extremely capable for commercial applications in wastewater treatment and drinking water purification.
|
|