Home | << 1 >> |
Ahrer, E. M., Alderson, L., Batalha, N. M., Batalha, N. E., Bean, J. L., Beatty, T. G., et al. (2023). Identification of carbon dioxide in an exoplanet atmosphere. Nature, Early Access.
Abstract: Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called 'metallicity')(1-3), and thus the formation processes of the primary atmospheres of hot gas giants(4-6). It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets(7-9). Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification(10-12). Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme(13,14). The data used in this study span 3.0-5.5micrometres in wavelength and show a prominent CO2 absorption feature at 4.3micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative-convective-thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0micrometres that is not reproduced by these models.
Keywords: GIANT PLANETS; BROWN DWARFS; LINE LISTS; H2O; SKY
|
Feinstein, A. D., Radica, M., Welbanks, L., Murray, C. A., Ohno, K., Coulombe, L. P., et al. (2023). Early Release Science of the exoplanet WASP-39b with JWST NIRISS. Nature, Early Access.
Abstract: The Saturn-mass exoplanet WASP-39b has been the subject of extensive efforts to determine its atmospheric properties using transmission spectroscopy(1-4). However, these efforts have been hampered by modelling degeneracies between composition and cloud properties that are caused by limited data quality(5-9). Here we present the transmission spectrum of WASP-39b obtained using the Single-Object Slitless Spectroscopy (SOSS) mode of the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument on the JWST. This spectrum spans 0.6-2.8 mu m in wavelength and shows several water-absorption bands, the potassium resonance doublet and signatures of clouds. The precision and broad wavelength coverage of NIRISS/SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favouring a heavy-element enhancement ('metallicity') of about 10-30 times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are also best explained by wavelength-dependent, non-grey clouds with inhomogeneous coverageof the planet's terminator.
Keywords: EXOMOL LINE LISTS; THERMAL STRUCTURE; MODEL; ABUNDANCES; ATMOSPHERE; RETRIEVAL; SCATTERING; EFFICIENT; SPECTRUM; METHANE
|
Garcia-Echauri, S. A., Gidekel, M., Gutierrez-Moraga, A., Santos, L., & De Leon-Rodriguez, A. (2011). Isolation and phylogenetic classification of culturable psychrophilic prokaryotes from the Collins glacier in the Antarctica. Folia Microbiol., 56(3), 209–214.
Abstract: Culturable psychrophilic prokaryotes were obtained of samples of glacier sediment, seaside mud, glacier melted ice, and Deschampsia antarctica rhizosphere from Collins glacier, Antarctica. The taxonomic classification was done by a culture-dependent molecular approach involving the Amplified Ribosomal DNA Restriction Analysis. Two hundred sixty colonies were successfully isolated and sub-cultivated under laboratory conditions. The analysis showed a bacterial profile dominated by Beta-proteobacteria (35.2%) followed by Gamma-proteobacteria (18.5%), Alpha-proteobacteria (16.6%), Gram-positive with high GC content (13%), Cytophaga-Flavobacterium-Bacteroides (13%) and Gram-positive with low GC content (3.7%). Eleven of the isolates have been reported previously and the others microorganisms remain uncharacterized. The isolated microorganisms here could be a potential source for biotechnological products, such as cold-active enzymes and secondary metabolites.
|
Grieves, N., Bouchy, F., Lendl, M., Carmichael, T., Mireles, I., Shporer, A., et al. (2021). Populating the brown dwarf and stellar boundary: Five stars with transiting companions near the hydrogen-burning mass limit. Astron. Astrophys., 652.
Abstract: We report the discovery of five transiting companions near the hydrogen-burning mass limit in close orbits around main sequence stars originally identified by the Transiting Exoplanet Survey Satellite (TESS) as TESS objects of interest (TOIs): TOI-148, TOI-587, TOI-681, TOI-746, and TOI-1213. Using TESS and ground-based photometry as well as radial velocities from the CORALIE, CHIRON, TRES, and FEROS spectrographs, we found the companions have orbital periods between 4.8 and 27.2 days, masses between 77 and 98 M-Jup , and radii between 0.81 and 1.66 R-Jup . These targets have masses near the uncertain lower limit of hydrogen core fusion (similar to 73-96 M-Jup ), which separates brown dwarfs and low-mass stars. We constrained young ages for TOI-587 (0.2 +/- 0.1 Gyr) and TOI-681 (0.17 +/- 0.03 Gyr) and found them to have relatively larger radii compared to other transiting companions of a similar mass. Conversely we estimated older ages for TOI-148 and TOI-746 and found them to have relatively smaller companion radii. With an effective temperature of 9800 +/- 200 K, TOI-587 is the hottest known main-sequence star to host a transiting brown dwarf or very low-mass star. We found evidence of spin-orbit synchronization for TOI-148 and TOI-746 as well as tidal circularization for TOI-148. These companions add to the population of brown dwarfs and very low-mass stars with well measured parameters ideal to test formation models of these rare objects, the origin of the brown dwarf desert, and the distinction between brown dwarfs and hydrogen-burning main sequence stars.
Keywords: brown dwarfs; stars; low-mass; binaries: eclipsing
|
Mireles, I., Shporer, A., Grieves, N., Zhou, G., Gunther, M. N., Brahm, R., et al. (2020). TOI 694b and TIC 220568520b: Two Low-mass Companions near the Hydrogen-burning Mass Limit Orbiting Sun-like Stars. Astron. J., 160(3), 13 pp.
Abstract: We report the discovery of TOI 694 b and TIC 220568520 b, two low-mass stellar companions in eccentric orbits around metal-rich Sun-like stars, first detected by the Transiting Exoplanet Survey Satellite (TESS). TOI 694 b has an orbital period of 48.05131 +/- 0.00019 days and eccentricity of 0.51946 +/- 0.00081, and we derive a mass of 89.0 +/- 5.3 M-Jup (0.0849 +/- 0.0051 M-circle dot) and radius of 1.111 +/- 0.017 R-Jup (0.1142 +/- 0.0017 R-circle dot). TIC 220568520 b has an orbital period of 18.55769 +/- 0.00039 days and eccentricity of 0.0964 +/- 0.0032, and we derive a mass of 107.2 +/- 5.2 M-Jup (0.1023 +/- 0.0050 M-circle dot) and radius of 1.248 +/- 0.018 R-Jup (0.1282 +/- 0.0019 R-circle dot). Both binary companions lie close to and above the hydrogen-burning mass threshold that separates brown dwarfs and the lowest-mass stars, with TOI 694 b being 2s above the canonical mass threshold of 0.075 M-circle dot. The relatively long periods of the systems mean that the magnetic fields of the low-mass companions are not expected to inhibit convection and inflate the radius, which according to one leading theory is common in similar objects residing in short-period tidally synchronized binary systems. Indeed we do not find radius inflation for these two objects when compared to theoretical isochrones. These two new objects add to the short but growing list of low-mass stars with well-measured masses and radii, and highlight the potential of the TESS mission for detecting such rare objects orbiting bright stars.
Keywords: Low mass stars; M dwarf stars; Eclipsing binary stars
|
Nielsen, L. D., Brahm, R., Bouchy, F., Espinoza, N., Turner, O., Rappaport, S., et al. (2020). Three short-period Jupiters from TESS: HIP 65Ab, TOI-157b, and TOI-169b. Astron. Astrophys., 639, 17 pp.
Abstract: We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI-129, TIC-201248411) is an ultra-short-period Jupiter orbiting a bright (V = 11.1 mag) K4-dwarf every 0.98 days. It is a massive 3.213 +/- 0.078 M-J planet in a grazing transit configuration with an impact parameter of b = 1.17(-0.08)(+0.10) b=1.17-0.08+0.10 . As a result the radius is poorly constrained, 2.03(-0.49)(+0.61)R(J) 2.03-0.49+0.61 RJ . The planet's distance to its host star is less than twice the separation at which it would be destroyed by Roche lobe overflow. It is expected to spiral into HIP 65A on a timescale ranging from 80 Myr to a few gigayears, assuming a reduced tidal dissipation quality factor of Q(s)(') = 10(7) – 10(9) Qs ' =107-109 . We performed a full phase-curve analysis of the TESS data and detected both illumination- and ellipsoidal variations as well as Doppler boosting. HIP 65A is part of a binary stellar system, with HIP 65B separated by 269 AU (3.95 arcsec on sky). TOI-157b (TIC 140691463) is a typical hot Jupiter with a mass of 1.18 +/- 0.13 M-J and a radius of 1.29 +/- 0.02 R-J. It has a period of 2.08 days, which corresponds to a separation of just 0.03 AU. This makes TOI-157 an interesting system, as the host star is an evolved G9 sub-giant star (V = 12.7). TOI-169b (TIC 183120439) is a bloated Jupiter orbiting a V = 12.4 G-type star. It has a mass of 0.79 +/- 0.06 M-J and a radius of 1.09(-0.05)(+0.08)R(J) 1.09-0.05+0.08<mml:msub>RJ . Despite having the longest orbital period (P = 2.26 days) of the three planets, TOI-169b receives the most irradiation and is situated on the edge of the Neptune desert. All three host stars are metal rich with [Fe / H] ranging from 0.18 to0.24.
|