Home | << 1 >> |
![]() |
Addison, B. C., Wright, D. J., Nicholson, B. A., Cale, B., Mocnik, T., Huber, D., et al. (2021). TOI-257b (HD 19916b): a warm sub-saturn orbiting an evolved F-type star. Mon. Not. Roy. Astron. Soc., 502(3), 3704–3722.
Abstract: We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA's Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the MINERVA-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of M-P = 0.138 +/- 0.023M(J) (43.9 +/- 7.3 M-circle plus), a radius of R-P = 0.639 +/- 0.013 R-J (7.16 +/- 0.15 R-circle plus), bulk density of 0.65(-0.11)(+0.12) (cgs), and period 18.38818(-0.00084)(+0.00085) days. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M-* = 1.390 +/- 0.046(Msun), R-* = 1.888 +/- 0.033 R-sun, T-eff = 6075 +/- 90 K, and vsin i = 11.3 +/- 0.5 kms(-1). Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a similar to 71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (similar to 100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems.
|
Brahm, R., Nielsen, L. D., Wittenmyer, R. A., Wang, S. H., Rodriguez, J. E., Espinoza, N., et al. (2020). TOI-481 b and TOI-892 b: Two Long-period Hot Jupiters from the Transiting Exoplanet Survey Satellite. Astron. J., 160(5), 14 pp.
Abstract: We present the discovery of two new 10 day period giant planets from the Transiting Exoplanet Survey Satellite mission, whose masses were precisely determined using a wide diversity of ground-based facilities. TOI-481.b and TOI-892.b have similar radii (0.99.+/-.0.01 R-J and 1.07.+/-.0.02 R-J, respectively), and orbital periods (10.3311 days and 10.6266 days, respectively), but significantly different masses (1.53.+/-.0.03 MJ versus 0.95.+/-.0.07 MJ, respectively). Both planets orbit metal-rich stars ([Fe H] = + 0.26. 0.05 dex and [Fe H] = +0.24. 0.05 for TOI-481 and TOI-892, respectively) but at different evolutionary stages. TOI-481 is a M*=.1.14.+/-.0.02 M., R*=.1.66.+/-.0.02 R. G-type star (T-eff = 5735 +/- 72 K), that with an age of 6.7 Gyr, is in the turn-off point of the main sequence. TOI-892 on the other hand, is a F-type dwarf star (T-eff = 6261 +/- 80 K), which has a mass of M*=.1.28.+/-.0.03 M-circle dot and a radius of R*=.1.39.+/-.0.02 R-circle dot. TOI-481.b and TOI-892.b join the scarcely populated region of transiting gas giants with orbital periods longer than 10 days, which is important to constrain theories of the formation and structure of hot Jupiters.
|
Brahm, R., Ulmer-Moll, S., Hobson, M. J., Jordan, A., Henning, T., Trifonov, T., et al. (2023). Three Long-period Transiting Giant Planets from TESS. Astron. J., 165(6), 227.
Abstract: We report the discovery and orbital characterization of three new transiting warm giant planets. These systems were initially identified as presenting single-transit events in the light curves generated from the full-frame images of the Transiting Exoplanet Survey Satellite. Follow-up radial velocity measurements and additional light curves were used to determine the orbital periods and confirm the planetary nature of the candidates. The planets orbit slightly metal-rich late F- and early G-type stars. We find that TOI 4406b has a mass of M ( P ) = 0.30 +/- 0.04 M (J), a radius of R ( P ) = 1.00 +/- 0.02 R (J), and a low-eccentricity orbit (e = 0.15 +/- 0.05) with a period of P = 30.08364 +/- 0.00005 days. TOI 2338b has a mass of M ( P ) = 5.98 +/- 0.20 M (J), a radius of R ( P ) = 1.00 +/- 0.01 R (J), and a highly eccentric orbit (e = 0.676 +/- 0.002) with a period of P = 22.65398 +/- 0.00002 days. Finally, TOI 2589b has a mass of M ( P ) = 3.50 +/- 0.10 M (J), a radius of R ( P ) = 1.08 +/- 0.03 R (J), and an eccentric orbit (e = 0.522 +/- 0.006) with a period of P = 61.6277 +/- 0.0002 days. TOI 4406b and TOI 2338b are enriched in metals compared to their host stars, while the structure of TOI 2589b is consistent with having similar metal enrichment to its host star.
|
Eberhardt, J., Hobson, M. J., Henning, T., Trifonov, T., Brahm, R., Espinoza, N., et al. (2023). Three Warm Jupiters around Solar-analog Stars Detected with TESS. Astron. J., 166(6), 271.
Abstract: We report the discovery and characterization of three giant exoplanets orbiting solar-analog stars, detected by the TESS space mission and confirmed through ground-based photometry and radial velocity measurements taken at La Silla observatory with FEROS. TOI-2373 b is a warm Jupiter orbiting its host star every similar to 13.3 days, and is one of the most massive known exoplanet with a precisely determined mass and radius around a star similar to the Sun, with an estimated mass of m(p) = 9.3(-0.2)(+0.2)Mjup and a radius of r(p) = 0.93(-0.2)(+0.2) jup. With a mean density of r = 14.4 1.0 g cm + 0.9 -3, TOI-2373 b is among the densest planets discovered so far. TOI-2416 b orbits its host star on a moderately eccentric orbit with a period of similar to 8.3 days and an eccentricity of e = 0.32 0.02 + 0.02. TOI-2416 b is more massive than Jupiter with m(p) = 3.0 +0.09 M 0.10 jup, however is significantly smaller with a radius of r(p) = 0.88 + 0.02 ,R 0.02 jup, leading to a high mean density of r = 5.4 0.3 g cm + 0.3 -3. TOI-2524 b is a warm Jupiter near the hot Jupiter transition region, orbiting its star every similar to 7.2 days on a circular orbit. It is less massive than Jupiter with a mass of m(p)=0.64- + 0.04 M 0.04 jup, and is consistent with an inflated radius of r(p)= 1.00- + 0.03 R 0.02 jup, leading to a low mean density of r = 0.79 0.08 g cm + 0.08 -3. The newly discovered exoplanets TOI-2373 b, TOI-2416 b, and TOI-2524 b have estimated equilibrium temperatures of 860 10 +10 K, 1080 10 +10 K, and 1100-20 +20 K, respectively, placing them in the sparsely populated transition zone between hot and warm Jupiters.
|
Espinoza, N., Brahm, R., Henning, T., Jordan, A., Dorn, C., Rojas, F., et al. (2020). HD 213885b: a transiting 1-d-period super-Earth with an Earth-like composition around a bright (V=7.9) star unveiled by TESS. Mon. Not. Roy. Astron. Soc., 491(2), 2982–2999.
Abstract: We report the discovery of the 1.008-d, ultrashort period (USP) super-EarthHD213885b (TOI141b) orbiting the bright (V= 7.9) star HD 213885 (TOI-141, TIC 403224672), detected using photometry from the recently launched TESS mission. Using FEROS, HARPS, and CORALIE radial velocities, we measure a precise mass of 8.8 +/- 0.6M. for this 1.74 +/- 0.05 R. exoplanet, which provides enough information to constrain its bulk composition – similar to Earth's but enriched in iron. The radius, mass, and stellar irradiation of HD 213885b are, given our data, very similar to 55 Cancri e, making this exoplanet a good target to perform comparative exoplanetology of short period, highly irradiated super-Earths. Our precise radial velocities reveal an additional 4.78-d signal which we interpret as arising from a second, non-transiting planet in the system, HD 213885c, whoseminimum mass of 19.9 +/- 1.4M. makes it consistent with being a Neptune-mass exoplanet. The HD 213885 system is very interesting from the perspective of future atmospheric characterization, being the second brightest star to host an USP transiting super-Earth (with the brightest star being, in fact, 55 Cancri). Prospects for characterization with present and future observatories are discussed.
|
Hobson, M. J., Trifonov, T., Henning, T., Jordan, A., Rojas, F., Espinoza, N., et al. (2023). Alert Results TOI-199 b: A Well-characterized 100 day Transiting Warm Giant Planet with TTVs Seen from Antarctica 41 of 41 TOI-199 b: A Well-characterized 100 day Transiting Warm Giant Planet with TTVs Seen from Antarctica. Astron. J., 166(5), 201.
Abstract: We present the spectroscopic confirmation and precise mass measurement of the warm giant planet TOI-199 b. This planet was first identified in TESS photometry and confirmed using ground-based photometry from ASTEP in Antarctica including a full 6.5 hr long transit, PEST, Hazelwood, and LCO; space photometry from NEOSSat; and radial velocities (RVs) from FEROS, HARPS, CORALIE, and CHIRON. Orbiting a late G-type star, TOI-199 b has a 104.854-0.002+0.001day period, a mass of 0.17 +/- 0.02 M J, and a radius of 0.810 +/- 0.005 R J. It is the first warm exo-Saturn with a precisely determined mass and radius. The TESS and ASTEP transits show strong transit timing variations (TTVs), pointing to the existence of a second planet in the system. The joint analysis of the RVs and TTVs provides a unique solution for the nontransiting companion TOI-199 c, which has a period of 273.69-0.22+0.26days and an estimated mass of 0.28-0.01+0.02MJ . This period places it within the conservative habitable zone.
Keywords: MAGNETIC ACTIVITY; ERROR-CORRECTION; EXOPLANET YIELD; I-ARCHITECTURE; ASTEP 400; MODEL; TELESCOPE; SYSTEMS; JUPITER; CODE
|
Hobson, M. J., Brahm, R., Jordan, A.., Espinoza, N., Kossakowski, D., Henning, T., et al. (2021). A Transiting Warm Giant Planet around the Young Active Star TOI-201. Astron. J., 161(5), 235.
Abstract: We present the confirmation of the eccentric warm giant planet TOI-201 b, first identified as a candidate in Transiting Exoplanet Survey Satellite photometry (Sectors 1-8, 10-13, and 27-28) and confirmed using groundbased photometry from Next Generation Transit Survey and radial velocities from FEROS, HARPS, CORALIE, and MINERVA-Australis. TOI-201 b orbits a young (0.87(-0.49)(+0.46)) and bright (V = 9.07 mag) F-type star with a 52.9781 day period. The planet has a mass of 0.42(-0.03)(+0.05) M-J, a radius of 1.008(-0.015)(+0.012) R-J, and an orbital eccentricity of 0.28(-0.09)(+0.06); it appears to still be undergoing fairly rapid cooling, as expected given the youth of the host star. The star also shows long-term variability in both the radial velocities and several activity indicators, which we attribute to stellar activity. The discovery and characterization of warm giant planets such as TOI-201 b are important for constraining formation and evolution theories for giant planets.
Keywords: MAGNETIC ACTIVITY; ERROR-CORRECTION; EXOPLANETS; ROTATION; TEMPERATURES; EVOLUTION; VELOCITY; SYSTEMS; TOOL
|
Jones, M. I., Reinarz, Y., Brahm, R.., Tala Pinto, M., Eberhardt, J., Rojas, F., et al. (2024). A long-period transiting substellar companion in the super-Jupiters to brown dwarfs mass regime and a prototypical warm-Jupiter detected by TESS. Astron. Astrophys., 683, A192.
Abstract: We report on the confirmation and follow-up characterization of two long-period transiting substellar companions on low-eccentricity orbits around TIC 4672985 and TOI-2529, whose transit events were detected by the TESS space mission. Ground-based photometric and spectroscopic follow-up from different facilities, confirmed the substellar nature of TIC 4672985 b, a massive gas giant in the transition between the super-Jupiters and brown dwarfs mass regime. From the joint analysis we derived the following orbital parameters: P = 69.0480(-0.0005)(+0.0004) d, M-p = 12.74(-1.01)(+1.01) M-J, R-p = 1.026(-0.067)(+0.065) R-J and e = 0.018(-0.004)(+0.004). In addition, the RV time series revealed a significant trend at the similar to 350 m s(-1) yr(-1) level, which is indicative of the presence of a massive outer companion in the system. TIC 4672985 b is a unique example of a transiting substellar companion with a mass above the deuterium-burning limit, located beyond 0.1 AU and in a nearly circular orbit. These planetary properties are difficult to reproduce from canonical planet formation and evolution models. For TOI-2529 b, we obtained the following orbital parameters: P = 64.5949(-0.0003)(+0.0003) d, M-p = 2.340(-0.195)(+0.197) M-J, R-p = 1.030(-0.050)(+0.050) R-J and e = 0.021(-0.015)(+0.024), making this object a new example of a growing population of transiting warm giant planets.
|
Kossakowski, D., Espinoza, N., Brahm, R., Jordan, A., Henning, T., Rojas, F., et al. (2019). TOI-150b and TOI-163b: two transiting hot Jupiters, one eccentric and one inflated, revealed by TESS near and at the edge of the JWST CVZ. Mon. Not. Roy. Astron. Soc., 490(1), 1094–1110.
Abstract: We present the discovery of TYC9191-519-1b (TOI-150b, TIC 271893367) and HD271181b (TOI-163b, TIC 179317684), two hot Jupiters initially detected using 30-min cadence Transiting Exoplanet Survey Satellite (TESS) photometry from Sector 1 and thoroughly characterized through follow-up photometry (CHAT, Hazelwood, LCO/CTIO, El Sauce, TRAPPIST-S), high-resolution spectroscopy (FEROS, CORALIE), and speckle imaging (Gemini/DSSI), confirming the planetary nature of the two signals. A simultaneous joint fit of photometry and radial velocity using a new fitting package JULIET reveals that TOI-150b is a 1.254 +/- 0.016 R-J, massive (2.61(-0.12)(+0.19) M-J) hot Jupiter in a 5.857-d orbit, while TOI-163b is an inflated (R-P = 1.478(-0.029)(+0.022) R-J, M-P = 1.219 +/- 0.11 M-J) hot Jupiter on a P = 4.231-d orbit; both planets orbit F-type stars. A particularly interesting result is that TOI-150b shows an eccentric orbit (e = 0.262(-0.037)(+0.045)), which is quite uncommon among hot Jupiters. We estimate that this is consistent, however, with the circularization time-scale, which is slightly larger than the age of the system. These two hot Jupiters are both prime candidates for further characterization – in particular, both are excellent candidates for determining spin-orbit alignments via the Rossiter-McLaughlin (RM) effect and for characterizing atmospheric thermal structures using secondary eclipse observations considering they are both located closely to the James Webb Space Telescope (JWST) Continuous Viewing Zone (CVZ).
|
Schlecker, M., Kossakowski, D., Brahm, R., Espinoza, N., Henning, T., Carone, L., et al. (2020). A highly eccentric warm jupiter orbiting TIC 237913194. Astron. J., 160(6), 275.
Abstract: The orbital parameters of warm Jupiters serve as a record of their formation history, providing constraints on formation scenarios for giant planets on close and intermediate orbits. Here, we report the discovery of TIC.237913194b, detected in full-frame images from Sectors 1 and 2 of the Transiting Exoplanet Survey Satellite (TESS), ground-based photometry (Chilean-Hungarian Automated Telescope, Las Cumbres Observatory Global Telescope), and Fiber-fed Extended Range Optical Spectrograph radial velocity time series. We constrain its mass to M-P = 1.942(-0.091)(+0.091) M-J and its radius to R-P = 1.117(-0.047)(+0.054) R-J, implying a bulk density similar to Neptune's. It orbits a G-type star (M-* = 1.026(-0.055)(+0.057) M-circle dot, V = 12.1 mag) with a period of 15.17 days on one of the most eccentric orbits of all known warm giants (e approximate to 0.58). This extreme dynamical state points to a past interaction with an additional, undetected massive companion. A tidal evolution analysis showed a large tidal dissipation timescale, suggesting that the planet is not a progenitor for a hot Jupiter caught during its high-eccentricity migration. TIC.237913194b further represents an attractive opportunity to study the energy deposition and redistribution in the atmosphere of a warm Jupiter with high eccentricity.
|
Trifonov, T., Brahm, R., Espinoza, N., Henning, T., Jordan, A., Nesvorny, D., et al. (2021). A Pair of Warm Giant Planets near the 2:1 Mean Motion Resonance around the K-dwarf Star TOI-2202*. Astron. J., 162(6), 283.
Abstract: TOI-2202 b is a transiting warm Jovian-mass planet with an orbital period of P = 11.91 days identified from the Full Frame Images data of five different sectors of the TESS mission. Ten TESS transits of TOI-2202 b combined with three follow-up light curves obtained with the CHAT robotic telescope show strong transit timing variations (TTVs) with an amplitude of about 1.2 hr. Radial velocity follow-up with FEROS, HARPS, and PFS confirms the planetary nature of the transiting candidate (a (b) = 0.096 +/- 0.001 au, m (b) = 0.98 +/- 0.06 M (Jup)), and a dynamical analysis of RVs, transit data, and TTVs points to an outer Saturn-mass companion (a (c) = 0.155 +/- 0.002 au, m (c) = 0.37 +/- 0.10 M (Jup)) near the 2:1 mean motion resonance. Our stellar modeling indicates that TOI-2202 is an early K-type star with a mass of 0.82 M (circle dot), a radius of 0.79 R (circle dot), and solar-like metallicity. The TOI-2202 system is very interesting because of the two warm Jovian-mass planets near the 2:1 mean motion resonance, which is a rare configuration, and their formation and dynamical evolution are still not well understood.
Keywords: EARTH-SIZED PLANET; SUPER-EARTH; HOT JUPITERS; TESS; SYSTEMS; TRANSIT; NEPTUNE; MODEL; PERIODOGRAM; SCATTERING
|
Trifonov, T., Brahm, R., Jordan, A., Hartogh, C., Henning, T., Hobson, M. J., et al. (2023). TOI-2525 b and c: A Pair of Massive Warm Giant Planets with Strong Transit Timing Variations Revealed by TESS. Astron. J., 165(4), 179.
Abstract: The K-type star TOI-2525 has an estimated mass of M = 0.849(-0.033)(+0.024) M-circle dot and radius of R = 0.785(-0.007)(+0.007) R-circle dot observed by the TESS mission in 22 sectors (within sectors 1 and 39). The TESS light curves yield significant transit events of two companions, which show strong transit timing variations (TTVs) with a semiamplitude of similar to 6 hr. We performed TTV dynamical and photodynamical light-curve analysis of the TESS data combined with radial velocity measurements from FEROS and PFS, and we confirmed the planetary nature of these companions. The TOI-2525 system consists of a transiting pair of planets comparable to Neptune and Jupiter with estimated dynamical masses of m(b) = 0.088(-0.004)(+0.005) and m(c) = 0.709(-0.033)(+0.034) M-Jup, radii of r(b) = 0.88(-0.02)(+0.02) and r(c) = 0.98(-0.02)(+0.02) R-Jup, and orbital periods of P-b = 23.288(-0.002)(+0.001) and P-c = 49.260(-0.001)(+0.001) days for the inner and outer planet, respectively. The period ratio is close to the 2:1 period commensurability, but the dynamical simulations of the system suggest that it is outside the mean-motion resonance (MMR) dynamical configuration. Object TOI-2525 b is among the lowest-density Neptune-mass planets known to date, with an estimated median density of rho(b) = 0.174(-0.015)(+0.016) g cm(-3). The TOI-2525 system is very similar to the other K dwarf systems discovered by TESS, TOI-2202 and TOI-216, which are composed of almost identical K dwarf primaries and two warm giant planets near the 2:1 MMR.
Keywords: HOT JUPITERS; EXOPLANET SURVEY; SUPER-EARTH; LOW-DENSITY; SYSTEMS; NEPTUNE; STAR; II.; POPULATION; MIGRATION
|
Ulmer-Moll, S., Lendl, M., Gill, S., Villanueva, S., Hobson, M. J., Bouchy, F., et al. (2022). Two long-period transiting exoplanets on eccentric orbits: NGTS-20 b (TOI-5152 b) and TOI-5153 b. Astron. Astrophys., 666, A46.
Abstract: Context. Long-period transiting planets provide the opportunity to better understand the formation and evolution of planetary systems. Their atmospheric properties remain largely unaltered by tidal or radiative effects of the host star, and their orbital arrangement reflects a different and less extreme migrational history compared to close-in objects. The sample of long-period exoplanets with well-determined masses and radii is still limited, but a growing number of long-period objects reveal themselves in the Transiting Exoplanet Survey Satellite (TESS) data.
Aims. Our goal is to vet and confirm single-transit planet candidates detected in the TESS space-based photometric data through spectroscopic and photometric follow-up observations with ground-based instruments. Methods. We used high-resolution spectrographs to confirm the planetary nature of the transiting candidates and measure their masses. We also used the Next Generation Transit Survey (NGTS) to photometrically monitor the candidates in order to observe additional transits. Using a joint modeling of the light curves and radial velocities, we computed the orbital parameters of the system and were able to precisely measure the mass and radius of the transiting planets. Results. We report the discovery of two massive, warm Jupiter-size planets, one orbiting the F8-type star TOI-5153 and the other orbiting the G1-type star NGTS-20 (=TOI-5152). From our spectroscopic analysis, both stars are metal rich with a metallicity of 0.12 and 0.15, respectively. Only TOI-5153 presents a second transit in the TESS extended mission data, but NGTS observed NGTS-20 as part of its mono-transit follow-up program and detected two additional transits. Follow-up high-resolution spectroscopic observations were carried out with CORALIE, CHIRON, FEROS, and HARPS. TOI-5153 hosts a planet with a period of 20.33 days, a planetary mass of 3.26(-0.17)(+0.18) Jupiter masses (M-j), a radius of 1.06(-0.04)(+0.04)R(J), and an orbital eccentricity of 0.091(-0.02)(6)(+0.024). NGTS-20 b is a 2.98(-)(0.)(15)(+0.16) M-J planet with a radius of 1.07(-0.0)(4)(+0.04) R-J on an eccentric (0.432(-0.023)(+0.023)) orbit with an orbital period of 54.19 days. Both planets are metal enriched and their heavy element content is in line with the previously reported mass-metallicity relation for gas giants. Conclusions. Both warm Jupiters orbit moderately bright host stars, making these objects valuable targets for follow-up studies of the planetary atmosphere and measurement of the spin-orbit angle of the system. |