|
Brahm, R., Nielsen, L. D., Wittenmyer, R. A., Wang, S. H., Rodriguez, J. E., Espinoza, N., et al. (2020). TOI-481 b and TOI-892 b: Two Long-period Hot Jupiters from the Transiting Exoplanet Survey Satellite. Astron. J., 160(5), 14 pp.
Abstract: We present the discovery of two new 10 day period giant planets from the Transiting Exoplanet Survey Satellite mission, whose masses were precisely determined using a wide diversity of ground-based facilities. TOI-481.b and TOI-892.b have similar radii (0.99.+/-.0.01 R-J and 1.07.+/-.0.02 R-J, respectively), and orbital periods (10.3311 days and 10.6266 days, respectively), but significantly different masses (1.53.+/-.0.03 MJ versus 0.95.+/-.0.07 MJ, respectively). Both planets orbit metal-rich stars ([Fe H] = + 0.26. 0.05 dex and [Fe H] = +0.24. 0.05 for TOI-481 and TOI-892, respectively) but at different evolutionary stages. TOI-481 is a M*=.1.14.+/-.0.02 M., R*=.1.66.+/-.0.02 R. G-type star (T-eff = 5735 +/- 72 K), that with an age of 6.7 Gyr, is in the turn-off point of the main sequence. TOI-892 on the other hand, is a F-type dwarf star (T-eff = 6261 +/- 80 K), which has a mass of M*=.1.28.+/-.0.03 M-circle dot and a radius of R*=.1.39.+/-.0.02 R-circle dot. TOI-481.b and TOI-892.b join the scarcely populated region of transiting gas giants with orbital periods longer than 10 days, which is important to constrain theories of the formation and structure of hot Jupiters.
|
|
|
Clark, J. T., Addison, B. C., Okumura, J., Vach, S., Errico, A., Heitzmann, A., et al. (2023). Spinning up a Daze: TESS Uncovers a Hot Jupiter Orbiting the Rapid Rotator TOI-778. Astron. J., 165(5), 207.
Abstract: NASA's Transiting Exoplanet Survey Satellite (TESS) mission has been uncovering a growing number of exoplanets orbiting nearby, bright stars. Most exoplanets that have been discovered by TESS orbit narrow-line, slow-rotating stars, facilitating the confirmation and mass determination of these worlds. We present the discovery of a hot Jupiter orbiting a rapidly rotating (v sin (i) = 35.1 +/- 1.0 km s(-1) early F3V-dwarf, HD 115447 (TOI-778). The transit signal taken from Sectors 10 and 37 of TESS's initial detection of the exoplanet is combined with follow-up ground-based photometry and velocity measurements taken from MINERVA-Australis, TRES, CORALIE, and CHIRON to confirm and characterize TOI-778 b. A joint analysis of the light curves and the radial velocity measurements yields a mass, a radius, and an orbital period for TOI-778 b of 2.76(-0.23)(+0.24) M-J, 1.370 +/- 0.043 R-J, and similar to 4.63 days, respectively. The planet orbits a bright (V = 9.1 mag) F3-dwarf with M = 1.40 +/- 0.05 M-circle dot, R = 1.70 +/- 0.05 R-circle dot, and log g = 4.05 +/- 0.17. We observed a spectroscopic transit of TOI-778 b, which allowed us to derive a sky-projected spin-orbit angle of 18 degrees +/- 11 degrees, consistent with an aligned planetary system. This discovery demonstrates the capability of smaller-aperture telescopes such as MINERVA-Australis to detect the radial velocity signals produced by planets orbiting broad-line, rapidly rotating stars.
|
|
|
Dong, J. Y., Huang, C. X., Dawson, R. I., Foreman-Mackey, D., Collins, K. A., Quinn, S. N., et al. (2021). Warm Jupiters in TESS Full-frame Images: A Catalog and Observed Eccentricity Distribution for Year 1. Astrophys. J. Suppl. Ser., 255(1), 6.
Abstract: Warm Jupiters-defined here as planets larger than 6 Earth radii with orbital periods of 8-200 days-are a key missing piece in our understanding of how planetary systems form and evolve. It is currently debated whether Warm Jupiters form in situ, undergo disk or high-eccentricity tidal migration, or have a mixture of origin channels. These different classes of origin channels lead to different expectations for Warm Jupiters' properties, which are currently difficult to evaluate due to the small sample size. We take advantage of the Transiting Exoplanet Survey Satellite (TESS) survey and systematically search for Warm Jupiter candidates around main-sequence host stars brighter than the TESS-band magnitude of 12 in the full-frame images in Year 1 of the TESS Prime Mission data. We introduce a catalog of 55 Warm Jupiter candidates, including 19 candidates that were not originally released as TESS objects of interest by the TESS team. We fit their TESS light curves, characterize their eccentricities and transit-timing variations, and prioritize a list for ground-based follow-up and TESS Extended Mission observations. Using hierarchical Bayesian modeling, we find the preliminary eccentricity distributions of our Warm-Jupiter-candidate catalog using a beta distribution, a Rayleigh distribution, and a two-component Gaussian distribution as the functional forms of the eccentricity distribution. Additional follow-up observations will be required to clean the sample of false positives for a full statistical study, derive the orbital solutions to break the eccentricity degeneracy, and provide mass measurements.
|
|
|
Grieves, N., Bouchy, F., Lendl, M., Carmichael, T., Mireles, I., Shporer, A., et al. (2021). Populating the brown dwarf and stellar boundary: Five stars with transiting companions near the hydrogen-burning mass limit. Astron. Astrophys., 652.
Abstract: We report the discovery of five transiting companions near the hydrogen-burning mass limit in close orbits around main sequence stars originally identified by the Transiting Exoplanet Survey Satellite (TESS) as TESS objects of interest (TOIs): TOI-148, TOI-587, TOI-681, TOI-746, and TOI-1213. Using TESS and ground-based photometry as well as radial velocities from the CORALIE, CHIRON, TRES, and FEROS spectrographs, we found the companions have orbital periods between 4.8 and 27.2 days, masses between 77 and 98 M-Jup , and radii between 0.81 and 1.66 R-Jup . These targets have masses near the uncertain lower limit of hydrogen core fusion (similar to 73-96 M-Jup ), which separates brown dwarfs and low-mass stars. We constrained young ages for TOI-587 (0.2 +/- 0.1 Gyr) and TOI-681 (0.17 +/- 0.03 Gyr) and found them to have relatively larger radii compared to other transiting companions of a similar mass. Conversely we estimated older ages for TOI-148 and TOI-746 and found them to have relatively smaller companion radii. With an effective temperature of 9800 +/- 200 K, TOI-587 is the hottest known main-sequence star to host a transiting brown dwarf or very low-mass star. We found evidence of spin-orbit synchronization for TOI-148 and TOI-746 as well as tidal circularization for TOI-148. These companions add to the population of brown dwarfs and very low-mass stars with well measured parameters ideal to test formation models of these rare objects, the origin of the brown dwarf desert, and the distinction between brown dwarfs and hydrogen-burning main sequence stars.
|
|
|
Hobson, M. J., Trifonov, T., Henning, T., Jordan, A., Rojas, F., Espinoza, N., et al. (2023). Alert Results TOI-199 b: A Well-characterized 100 day Transiting Warm Giant Planet with TTVs Seen from Antarctica 41 of 41 TOI-199 b: A Well-characterized 100 day Transiting Warm Giant Planet with TTVs Seen from Antarctica. Astron. J., 166(5), 201.
Abstract: We present the spectroscopic confirmation and precise mass measurement of the warm giant planet TOI-199 b. This planet was first identified in TESS photometry and confirmed using ground-based photometry from ASTEP in Antarctica including a full 6.5 hr long transit, PEST, Hazelwood, and LCO; space photometry from NEOSSat; and radial velocities (RVs) from FEROS, HARPS, CORALIE, and CHIRON. Orbiting a late G-type star, TOI-199 b has a 104.854-0.002+0.001day period, a mass of 0.17 +/- 0.02 M J, and a radius of 0.810 +/- 0.005 R J. It is the first warm exo-Saturn with a precisely determined mass and radius. The TESS and ASTEP transits show strong transit timing variations (TTVs), pointing to the existence of a second planet in the system. The joint analysis of the RVs and TTVs provides a unique solution for the nontransiting companion TOI-199 c, which has a period of 273.69-0.22+0.26days and an estimated mass of 0.28-0.01+0.02MJ . This period places it within the conservative habitable zone.
|
|
|
Jordan, A., Bakos, G. A., Bayliss, D., Bento, J., Bhatti, W., Brahm, R., et al. (2020). HATS-37Ab and HATS-38b: Two Transiting Hot Neptunes in the Desert*. Astron. J., 160(5), 14 pp.
Abstract: We report the discovery of two transiting Neptunes by the HATSouth survey. The planet HATS-37Ab has a mass of 0.099 +/- 0.042 MJ (31.5.+/-.13.4M(circle dot)) and a radius of 0.606 +/- 0.016 R-J, and is on a P = 4.3315 day orbit around a V = 12.266 +/- 0.030 mag, 0.843(-0.012)(+0.017)M(circle dot) star with a radius of 0.877(-0.012)(+0.019) R-circle dot We also present evidence that the star HATS-37A has an unresolved stellar companion HATS-37B, with a photometrically estimated mass of 0.654 +/- 0.033.M-circle dot The planet HATS-38b has a mass of 0.074. 0.011MJ (23.5 +/- 3.5M(circle dot)) and a radius of 0.614 +/- 0.017 R-J, and is on a P = 4.3750 day orbit around a V = 12.411 +/- 0.030 mag, 0.890(-0.012)(+0.016) M-circle dot star with a radius of 1.105 +/- 0.016.R-circle dot Both systems appear to be old, with isochrone-based ages of 11.46(-1.45)(+0.79) Gyr, and 11.89 +/- 0.60 Gyr, respectively. Both HATS-37Ab and HATS-38b lie in the Neptune desert and are thus examples of a population with a low occurrence rate. They are also among the lowest-mass planets found from ground-based wide-field surveys to date.
|
|
|
Kaye, L., Vissapragada, S., Gunther, M. N., Aigrain, S., Mikal-Evans, T., Jensen, E. L. N., et al. (2022). Transit timings variations in the three-planet system: TOI-270. Mon. Not. Roy. Astron. Soc., 510(4), 5464–5485.
Abstract: We present ground- and space-based photometric observations of TOI-270 (L231-32), a system of three transiting planets consisting of one super-Earth and two sub-Neptunes discovered by TESS around a bright (K-mag = 8.25) M3V dwarf. The planets orbit near low-order mean-motion resonances (5:3 and 2:1) and are thus expected to exhibit large transit timing variations (TTVs). Following an extensive observing campaign using eight different observatories between 2018 and 2020, we now report a clear detection of TTVs for planets c and d, with amplitudes of similar to 10 min and a super-period of similar to 3 yr, as well as significantly refined estimates of the radii and mean orbital periods of all three planets. Dynamical modelling of the TTVs alone puts strong constraints on the mass ratio of planets c and d and on their eccentricities. When incorporating recently published constraints from radial velocity observations, we obtain masses of M-b = 1.48 +/- 0.18 M-circle plus, M-c = 6.20 +/- 0.31 M-circle plus, and M-d = 4.20 +/- 0.16 M-circle plus for planets b, c, and d, respectively. We also detect small but significant eccentricities for all three planets : e(b) = 0.0167 +/- 0.0084, e(c) = 0.0044 +/- 0.0006, and e(d) = 0.0066 +/- 0.0020. Our findings imply an Earth-like rocky composition for the inner planet, and Earth-like cores with an additional He/H2O atmosphere for the outer two. TOI-270 is now one of the best constrained systems of small transiting planets, and it remains an excellent target for atmospheric characterization.
|
|
|
Mancini, L., Sarkis, P., Henning, T., Bakos, G. A., Bayliss, D., Bento, J., et al. (2020). The highly inflated giant planet WASP-174b. Astron. Astrophys., 633, 12 pp.
Abstract: Context. The transiting exoplanetary system WASP-174 was reported to be composed by a main-sequence F star (V = 11.8 mag) and a giant planet, WASP-174b (orbital period P-orb = 4.23 days). However only an upper limit was placed on the planet mass (<1.3 M-Jup), and a highly uncertain planetary radius (0.7-1.7 R-Jup) was determined.Aims. We aim to better characterise both the star and the planet and precisely measure their orbital and physical parameters.Methods. In order to constrain the mass of the planet, we obtained new measurements of the radial velocity of the star and joined them with those from the discovery paper. Photometric data from the HATSouth survey and new multi-band, high-quality (precision reached up to 0.37 mmag) photometric follow-up observations of transit events were acquired and analysed for getting accurate photometric parameters. We fit the model to all the observations, including data from the TESS space telescope, in two different modes: incorporating the stellar isochrones into the fit, and using an empirical method to get the stellar parameters. The two modes resulted to be consistent with each other to within 2<sigma>.Results. We confirm the grazing nature of the WASP-174b transits with a confidence level greater than 5 sigma, which is also corroborated by simultaneously observing the transit through four optical bands and noting how the transit depth changes due to the limb-darkening effect. We estimate that approximate to 76% of the disk of the planet actually eclipses the parent star at mid-transit of its transit events. We find that WASP-174b is a highly-inflated hot giant planet with a mass of M-p = 0.330 +/- 0.091 M-Jup and a radius of R-p = 1.435 +/- 0.050 R-Jup, and is therefore a good target for transmission-spectroscopy observations. With a density of rho (p) = 0.135 +/- 0.042 g cm(-3), it is amongst the lowest-density planets ever discovered with precisely measured mass and radius.
|
|
|
Nielsen, L. D., Brahm, R., Bouchy, F., Espinoza, N., Turner, O., Rappaport, S., et al. (2020). Three short-period Jupiters from TESS: HIP 65Ab, TOI-157b, and TOI-169b. Astron. Astrophys., 639, 17 pp.
Abstract: We report the confirmation and mass determination of three hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS) mission: HIP 65Ab (TOI-129, TIC-201248411) is an ultra-short-period Jupiter orbiting a bright (V = 11.1 mag) K4-dwarf every 0.98 days. It is a massive 3.213 +/- 0.078 M-J planet in a grazing transit configuration with an impact parameter of b = 1.17(-0.08)(+0.10) b=1.17-0.08+0.10 . As a result the radius is poorly constrained, 2.03(-0.49)(+0.61)R(J) 2.03-0.49+0.61 RJ . The planet's distance to its host star is less than twice the separation at which it would be destroyed by Roche lobe overflow. It is expected to spiral into HIP 65A on a timescale ranging from 80 Myr to a few gigayears, assuming a reduced tidal dissipation quality factor of Q(s)(') = 10(7) – 10(9) Qs ' =107-109 . We performed a full phase-curve analysis of the TESS data and detected both illumination- and ellipsoidal variations as well as Doppler boosting. HIP 65A is part of a binary stellar system, with HIP 65B separated by 269 AU (3.95 arcsec on sky). TOI-157b (TIC 140691463) is a typical hot Jupiter with a mass of 1.18 +/- 0.13 M-J and a radius of 1.29 +/- 0.02 R-J. It has a period of 2.08 days, which corresponds to a separation of just 0.03 AU. This makes TOI-157 an interesting system, as the host star is an evolved G9 sub-giant star (V = 12.7). TOI-169b (TIC 183120439) is a bloated Jupiter orbiting a V = 12.4 G-type star. It has a mass of 0.79 +/- 0.06 M-J and a radius of 1.09(-0.05)(+0.08)R(J) 1.09-0.05+0.08<mml:msub>RJ . Despite having the longest orbital period (P = 2.26 days) of the three planets, TOI-169b receives the most irradiation and is situated on the edge of the Neptune desert. All three host stars are metal rich with [Fe / H] ranging from 0.18 to0.24.
|
|
|
Osborn, A., Armstrong, D. J., Cale, B., Brahm, R., Wittenmyer, R. A., Dai, F., et al. (2021). TOI-431/HIP 26013: a super-Earth and a sub-Neptune transiting a bright, early K dwarf, with a third RV planet. Mon. Not. Roy. Astron. Soc., 507(2), 2782–2803.
Abstract: We present the bright (V-mag = 9.12), multiplanet system TOI-431, characterized with photometry and radial velocities (RVs). We estimate the stellar rotation period to be 30.5 +/- 0.7 d using archival photometry and RVs. Transiting Exoplanet Survey Satellite (TESS) objects of Interest (TOI)-431b is a super-Earth with a period of 0.49 d, a radius of 1.28 +/- 0.04 R-circle plus, a mass of 3.07 +/- 0.35 M-circle plus, and a density of 8.0 +/- 1.0 g cm(-3); TOI-431 d is a sub-Neptune with a period of 12.46 d, a radius of 3.29 +/- 0.09 R-circle plus, a mass of M-circle plus, and a density of 1.36 +/- 0.25 g cm(-3). We find a third planet, TOI-431c, in the High Accuracy Radial velocity Planet Searcher RV data, but it is not seen to transit in the TESS light curves. It has an Msin i of M-circle plus, and a period of 4.85 d. TOI-431d likely has an extended atmosphere and is one of the most well-suited TESS discoveries for atmospheric characterization, while the super-Earth TOI-431b may be a stripped core. These planets straddle the radius gap, presenting an interesting case-study for atmospheric evolution, and TOI-431b is a prime TESS discovery for the study of rocky planet phase curves.
|
|
|
Sha, L. Z., Vanderburg, A. M., Huang, C. X., Armstrong, D. J., Brahm, R., Giacalone, S., et al. (2023). TESS spots a mini-neptune interior to a hot saturn in the TOI-2000 system. Mon. Not. Roy. Astron. Soc., 524(1), 1113–1138.
Abstract: Hot jupiters (P < 10 d, M > 60 M.) are almost always found alone around their stars, but four out of hundreds known have inner companion planets. These rare companions allow us to constrain the hot jupiter's formation history by ruling out high-eccentricity tidal migration. Less is known about inner companions to hot Saturn-mass planets. We report here the discovery of the TOI-2000 system, which features a hot Saturn-mass planet with a smaller inner companion. The mini-neptune TOI-2000 b (2.70 +/- 0.15 R-circle plus, 11.0 +/- 2.4 M.) is in a 3.10-d orbit, and the hot saturn TOI-2000 c (8.14(+0.31) (-0.30) R-circle plus, 81.7(-4.6)(+4.7) M.) is in a 9.13-d orbit. Both planets transit their host star TOI-2000 (TIC 371188886, V = 10.98, TESS magnitude = 10.36), a metal-rich ([Fe/H] = 0.439 (+0.041)(-0.043)) G dwarf 173 pc away. TESS observed the two planets in sectors 9-11 and 36-38, and we followed up with groundbased photometry, spectroscopy, and speckle imaging. Radial velocities from CHIRON, FEROS, and HARPS allowed us to confirm both planets by direct mass measurement. In addition, we demonstrate constraining planetary and stellar parameters with MIST stellar evolutionary tracks through Hamiltonian Monte Carlo under the PYMC framework, achieving higher sampling efficiency and shorter run time compared to traditional Markov chain Monte Carlo. Having the brightest host star in the V band among similar systems, TOI-2000 b and c are superb candidates for atmospheric characterization by the JWST, which can potentially distinguish whether they formed together or TOI-2000 c swept along material during migration to form TOI-2000 b.
|
|