|
Martinez, C., Aguilar, C., Briones, E., Guzman, D., Zelaya, E., Troncoso, L., et al. (2018). Effects of Zr on the amorphization of Cu-Ni-Zr alloys prepared by mechanical alloying. J. Alloys Compd., 765, 771–781.
Abstract: This work presents the effects of high energy milling with different Ni and Zr ratios on the amorphization of ternary Cu-Ni-Zr alloys (initially, Cu-43Ni-7Zr, Cu-12Ni-31Zr, Cu-33Ni-7Zr, and Cu-12Ni-23Zr; and later, Cu-23Ni-15Zr and Cu-11Ni-7Zr). Microstructure was determined using X-Ray diffraction and electron microscopy. Results were compared to thermodynamic models. In the ternary alloys under study, the lattice parameter of the Cu-Ni solid solution was generally correlated to the amounts of nickel incorporated into the Cu lattice. However, longer milling times reduced that lattice parameter and facilitated Zr insertion into the solid solution. For example, after 5 h of milling time, microstructural analysis showed the formation of a solid solution with cubic structure in Cu-43Ni-7Zr. This pattern is consistent with the presence of a lattice parameter between that of Cu and Ni (alpha-phase); in contrast, the Cu-33Ni-7Zr alloy showed an alpha-phase and another similar to Zr. Results suggest that, as the amount of nickel increases, the ability to form an amorphous phase decreases. Additionally, experimental and thermodynamic data showed a solid-solution formation stage, followed by an amorphous phase formation stage that occurred as milling time and Zr content increased. (C) 2018 Published by Elsevier B.V.
|
|
|
Sepulveda, E., Mangalaraja, R. V., Troncoso, L., Jimenez, J., Salvo, C., & Sanhueza, F. (2022). Effect of barium on LSGM electrolyte prepared by fast combustion method for solid oxide fuel cells (SOFC). MRS Adv., Early Access.
Abstract: In this work, La0.85Sr0.15-xBaxGa0.85Mg0.15O3-delta (LSBGM), with 0 <= x <= 0.075, were prepared as electrolytes for solid oxide fuel cells applications. The effect of barium and sintering temperature on the structure and electrical properties was studied. A fast combustion method was used, starting with nitrate salts and citric acid as fuel. The XRD spectra showed two main phases corresponding to LSGM orthorhombic (space group Imma) and LSGM-cubic (space group Pm-3 m). From literature, both structures are reported as high oxygen ion conductive species, but normally, they are not reported to appear together. Major secondary phases were LaSrGaO4, BaLaGaO4, and BaLaGaO7. SEM revealed a material with low porosity, indicating incomplete densification. The sample La0.85Sr0.75Ba0.075Ga0.85Mg0.15O3-delta showed a conductivity of 0.016 and 0.058 S cm(-1) at 600 degrees C and 800 degrees C, respectively. This means an improvement of 34% compared to the non-barium sample La0.85Sr0.15Ga0.85Mg0.15O3-delta at 600 degrees C. Thus, this composition could be used in SOFC.
|
|