Astorga-Elo, M., Ramirez-Flandes, S., DeLong, E. F., & Ulloa, O. (2015). Genomic potential for nitrogen assimilation in uncultivated members of Prochlorococcus from an anoxic marine zone. Isme J., 9(5), 1264–1267.
Abstract: Cyanobacteria of the genus Prochlorococcus are the most abundant photosynthetic marine organisms and key factors in the global carbon cycle. The understanding of their distribution and ecological importance in oligotrophic tropical and subtropical waters, and their differentiation into distinct ecotypes, is based on genetic and physiological information from several isolates. Currently, all available Prochlorococcus genomes show their incapacity for nitrate utilization. However, environmental sequence data suggest that some uncultivated lineages may have acquired this capacity. Here we report that uncultivated low-light-adapted Prochlorococcus from the nutrient-rich, low-light, anoxic marine zone (AMZ) of the eastern tropical South Pacific have the genetic potential for nitrate uptake and assimilation. All genes involved in this trait were found syntenic with those present in marine Synechococcus. Genomic and phylogenetic analyses also suggest that these genes have not been aquired recently, but perhaps were retained from a common ancestor, highlighting the basal characteristics of the AMZ lineages within Prochlorococcus.
|
Lavin, P., Gonzalez, B., Santibanez, J. F., Scanlan, D. J., & Ulloa, O. (2010). Novel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific. Environ. Microbiol. Rep., 2(6), 728–738.
Abstract: P>The eastern tropical Pacific Ocean holds two of the main oceanic oxygen minimum zones of the global ocean. The presence of an oxygen-depleted layer at intermediate depths, which also impinges on the seafloor and in some cases the euphotic zone, plays a significant role in structuring both pelagic and benthic communities, and also in the vertical partitioning of microbial assemblages. Here, we assessed the genetic diversity and distribution of natural populations of the cyanobacteria Prochlorococcus and Synechococcus within oxic and suboxic waters of the eastern tropical Pacific using cloning and sequencing, and terminal restriction fragment length polymorphism (T-RFLP) analyses applied to the 16S-23S rRNA internal transcribed spacer region. With the T-RFLP approach we could discriminate 19 cyanobacterial clades, of which 18 were present in the study region. Synechococcus was more abundant in the surface oxic waters of the eastern South Pacific, while Prochlorococcus dominated the subsurface low-oxygen waters. Two of the dominant clades in the oxygen-deficient waters belong to novel and yet uncultivated lineages of low-light adapted Prochlorococcus.
|
Plominsky, A. M., Henriquez-Castillo, C., Delherbe, N., Podell, S., Ramirez-Flandes, S., Ugalde, J. A., et al. (2018). Distinctive Archaeal Composition of an Artisanal Crystallizer Pond and Functional Insights Into Salt-Saturated Hypersaline Environment Adaptation. Front. Microbiol., 9, 13 pp.
Abstract: Hypersaline environments represent some of the most challenging settings for life on Earth. Extremely halophilic microorganisms have been selected to colonize and thrive in these extreme environments by virtue of a broad spectrum of adaptations to counter high salinity and osmotic stress. Although there is substantial data on microbial taxonomic diversity in these challenging ecosystems and their primary osmoadaptation mechanisms, less is known about how hypersaline environments shape the genomes of microbial inhabitants at the functional level. In this study, we analyzed the microbial communities in five ponds along the discontinuous salinity gradient from brackish to salt-saturated environments and sequenced the metagenome of the salt (halite) precipitation pond in the artisanal Cahuil Solar Saltern system. We combined field measurements with spectrophotometric pigment analysis and flow cytometry to characterize the microbial ecology of the pond ecosystems, including primary producers and applied metagenomic sequencing for analysis of archaeal and bacterial taxonomic diversity of the salt crystallizer harvest pond. Comparative metagenomic analysis of the Cahuil salt crystallizer pond against microbial communities from other salt-saturated aquatic environments revealed a dominance of the archaeal genus Halorubrum and showed an unexpectedly low abundance of Haloquadratum in the Cahuil system. Functional comparison of 26 hypersaline microbial metagenomes revealed a high proportion of sequences associated with nucleotide excision repair, helicases, replication and restriction-methylation systems in all of them. Moreover, we found distinctive functional signatures between the microbial communities from salt-saturated (>30% [w/v] total salinity) compared to sub-saturated hypersaline environments mainly due to a higher representation of sequences related to replication, recombination and DNA repair in the former. The current study expands our understanding of the diversity and distribution of halophilic microbial populations inhabiting salt-saturated habitats and the functional attributes that sustain them.
|
Ramirez-Flandes, S., Gonzalez, B., & Ulloa, O. (2019). Redox traits characterize the organization of global microbial communities. Proc. Natl. Acad. Sci. U. S. A., 116(9), 3630–3635.
Abstract: The structure of biological communities is conventionally described as profiles of taxonomic units, whose ecological functions are assumed to be known or, at least, predictable. In environmental microbiology, however, the functions of a majority of microorganisms are unknown and expected to be highly dynamic and collectively redundant, obscuring the link between taxonomic structure and ecosystem functioning. Although genetic trait-based approaches at the community level might overcome this problem, no obvious choice of gene categories can be identified as appropriate descriptive units in a general ecological context. We used 247 microbial metagenomes from 18 biomes to determine which set of genes better characterizes the differences among biomes on the global scale. We show that profiles of oxidoreductase genes support the highest biome differentiation compared with profiles of other categories of enzymes, general protein-coding genes, transporter genes, and taxonomic gene markers. Based on oxidoreductases' description of microbial communities, the role of energetics in differentiation and particular ecosystem function of different biomes become readily apparent. We also show that taxonomic diversity is decoupled from functional diversity, e. g., grasslands and rhizospheres were the most diverse biomes in oxidoreductases but not in taxonomy. Considering that microbes underpin biogeochemical processes and nutrient recycling through oxidoreductases, this functional diversity should be relevant for a better understanding of the stability and conservation of biomes. Consequently, this approach might help to quantify the impact of environmental stressors on microbial ecosystems in the context of the global-scale biome crisis that our planet currently faces.
|
Valenzuela-Heredia, D., Henriquez-Castillo, C., Donoso, R., Lavin, P., Ulloa, O., Ringel, M. T., et al. (2021). An unusual overrepresentation of genetic factors related to iron homeostasis in the genome of the fluorescent Pseudomonas sp. ABC1. Microb. Biotechnol., 14(3), 1060–1072.
Abstract: Members of the genus Pseudomonas inhabit diverse environments, such as soil, water, plants and humans. The variability of habitats is reflected in the diversity of the structure and composition of their genomes. This cosmopolitan bacterial genus includes species of biotechnological, medical and environmental importance. In this study, we report on the most relevant genomic characteristics of Pseudomonas sp. strain ABC1, a siderophore-producing fluorescent strain recently isolated from soil. Phylogenomic analyses revealed that this strain corresponds to a novel species forming a sister clade of the recently proposed Pseudomonas kirkiae. The genomic information reveals an overrepresented repertoire of mechanisms to hoard iron when compared to related strains, including a high representation of fecI-fecR family genes related to iron regulation and acquisition. The genome of the Pseudomonas sp. ABC1 contains the genes for non-ribosomal peptide synthetases (NRPSs) of a novel putative Azotobacter-related pyoverdine-type siderophore, a yersiniabactin-type siderophore and an antimicrobial betalactone; the last two are found only in a limited number of Pseudomonas genomes. Strain ABC1 can produce siderophores in a low-cost medium, and the supernatants from cultures of this strain promote plant growth, highlighting their biotechnological potential as a sustainable industrial microorganism.
|