Pugazhenthiran, N., Sathishkumar, P., Albormani, O., Murugesan, S., Kandasamy, M., Selvaraj, M., et al. (2023). Silver nanoparticles modified ZnO nanocatalysts for effective degradation of ceftiofur sodium under UV-vis light illumination. Chemosphere, 313, 137515.
Abstract: Light-induced photocatalytic degradation of ceftiofur sodium (CFS) has been assessed in the presence of plas-monic zinc oxide nanostructures (ZnONSTs), like, ZnO nanoparticles, ZnO nanorods (ZnONRs) and ZnO nano -flowers (ZnONFs). Silver nanoparticles (Ag NPs) loaded ZnO nanostructures (Ag-ZnONSTs) are obtained through seed-assisted chemical reaction followed by chemical reduction of silver. The surface modification of ZnO nanostructures by Ag NPs effectually altered their optical properties. Further, the surface plasmonic effect of Ag NPs facilitates visible light absorption by ZnONSTs and improved the photogenerated electron and hole separation, which makes the ZnONSTs a more active photocatalyst than TiO2 (P25) nanoparticles. Especially, Ag-ZnONRs showed higher CFS oxidation rate constant (k' = 4.6 x 10-4 s-1) when compared to Ag-ZnONFs (k' = 2.8 x 10-4 s-1) and Ag-ZnONPs (k' = 2.5 x 10-4 s-1), owing to their high aspect ratio (60:1). The unidirectional transport of photogenerated charge carriers on the Ag-ZnONRs may be accountable for the observed high photocatalytic oxidation of CFS. The photocatalytic oxidation of CFS mainly proceeds through center dot OH radicals generated on the Ag-ZnONRs surface under light illumination. In addition, heterogeneous activation of perox-ymonosulfate by Ag-ZnONRs accelerates the rate of photocatalytic mineralization of CFS. The quantification of oxidative radicals supports the proposed CFS oxidation mechanism. Stability studies of plasmonic Ag-ZnONSTs strongly suggests that it could be useful to clean large volume of pharmaceutical wastewater under direct solar light irradiation.
|
Pugazhenthiran, N., Valdes, H., Mangalaraja, R. V., Sathishkumar, P., & Murugesan, S. (2022). Graphene modified “black {001}TiO2” nanosheets for photocatalytic oxidation of ethylene: The implications of chemical surface characteristics in the reaction mechanism. Sep. Purif. Technol., 292, 121008.
Abstract: In this work, crystal facets, bandgap, size and shape of reduced graphene oxide (rGO) modified anatase {001} black TiO2 nanosheets (rGO-B-TiO2 NSTs) were tailored for the photocatalytic oxidation of ethylene under high humidity content. XRD, Raman and HR-TEM analyses confirm that rGO-B-TiO2 NSTs have a 94 % of exposed {001} facets with high number of oxygen vacancies. In addition, rGO-B-TiO2 NSTs exhibit increased values of surface area and porosity compared to its pristine form. A 48 and 34 mu mol g(-1) of ethylene are adsorbed at the surface of rGO-B-TiO2 NSTs in the absence and in the presence of humidity, respectively. In addition, operando DRIFTS analyses provide the insight of surface interactions between ethylene molecules and adsorption sites of rGO-B-TiO2 NSTs. The photocatalytic removal efficiencies of the synthesized materials under both UV and visible light irradiation proceed as follows: rGO-B-TiO2 NSTs > B-TiO2 NSTs > TiO2 NSTs > commercial TiO2 NPs. Further, ethylene is very quickly photocatalytic oxidized when rGO-B-TiO2 NSTs is applied under UV light irradiation, having a 72 and 92 % ethylene removal in the absence and in the presence of humidity, respectively. Moreover, a 48 and 58 % of ethylene removal takes place in the absence and presence of humidity under visible light irradiation, respectively. Results indicate that rGO-B-TiO2 NSTs boost the photocatalytic activity through their virtue of visible-light absorption properties (Bandgap = 2.61 eV) and the rapid electron-hole separation at the rGO {0 0 1} black TiO2 NSTs interfaces. Such findings are confirmed through UV-visible diffused reflectance, photoelectrochemical and photoluminescence analyses. Nanosheets made of rGO modified {0 0 1} black TiO2 could be used as an effective photocatalyst for the removal of ethylene from large volume fruit storage areas by exploiting a simple light source in the presence of high content of humidity.
|
Sahlevani, S. F., Pandiyarajan, T., Arulraj, A., Valdes, H., Sanhueza, F., Contreras, D., et al. (2024). Tailored engineering of rod-shaped core@shell ZnO@CeO2 nanostructures as an optical stimuli-responsive in sunscreen cream. Mater. Today Commun., 38, 107959.
Abstract: The catalytic efficiency of the materials can be boosted with the selective designing (nanostructures) including the core@shell which aids in attaining the separation of photoinduced charge carriers. However, to effectively separate the carriers and reduce the rate of recombination, tuning the thickness of the shell wall is a vital one. The one-dimensional (1D) rod-like shell wall-controlled ZnO@CeO2 core@shell structures were successfully prepared via co-precipitation and hydrothermal methods using the hexamethylenetetramine (HMTA) as a reagent. The CeO2 shell wall thickness was fine-tuned between 15 and 70 nm with a variation in the concentration of HMTA reagent. The results revealed that the concentration of HMTA played a significant role in the formation of ZnO@CeO2 core@shell structures and in tuning their thickness. The FE-SEM images evidenced the core-shell structures formation with the specific thickness and uniformity. The HR-TEM images confirmed the homogeneity and regular form of the shell thickness. The unit cell and crystallite size were identified from the XRD analysis. The constructed core-shell structures were further employed in the formula of the prototypes of sunscreen and their photoprotective performance was analyzed in the view to cut the solar light irradiation in a new sunscreen formulation. The developed core-shell ZnO@CeO2 structures showed the excellent optical absorption in both the UV as well as visible regions.
|
Shanmugaraj, K., Vinoth, V., Pugazhenthiran, N., Valdes, H., Salvo, C., Sepulveda, E., et al. (2023). Ferrihydrite- Graphene oxide foams as an efficient adsorbent for Arsenic (III) removal from an aqueous solution. Inorg. Chem. Commun., 153, 110892.
Abstract: We report the synthesis of a new range of ferrihydrite-graphene oxide (FH-GO) foams using chitosan as cross linker, with varying iron content (5 wt%, 10 wt%, and 20 wt% of FH) as highly efficient adsorbents for the removal of arsenic (III) (As(III)) in an aqueous solution. The sonochemical methods were adopted to synthesize various FH-GO foams and were further characterized by XRD, SEM, TEM, FTIR, Raman, and XPS techniques. The synthesized materials were used for the removal of As(III) in both batch and fixed bed absorbent column methods. The adsorption isotherm results showed that the 10 wt% of FH-GO foams demonstrated a superior adsorbent for the As(III) with high adsorption capacities than that of the other two FH-GO foams (5 wt% and 20 wt% of FH). Moreover, 10 wt% of FH-GO foams was also demonstrated to be nearly a complete (>98.4%) removal of As(III) ions at neutral pH 7. The adsorption isotherm fitted very well with the Langmuir model with the highest accuracy data for all the synthesized adsorbent materials. In addition, the fixed bed absorbent column method was also adopted for the removal of As(III) ions in the water sample, which showed > 99.2% of removal efficiency. The outstanding adsorption capabilities, along with their easy and low-cost synthesis, make these kinds of adsorbents extremely capable for commercial applications in wastewater treatment and drinking water purification.
|
Vinoth, V., Kaimal, R., Selvamani, M., Michael, R., Pugazhenthiran, N., Mangalaraja, R. V., et al. (2023). Synergistic impact of nanoarchitectured GQDs-AgNCs(APTS) modified glassy carbon electrode in the electrochemical detection of guanine and adenine. J. Electroanal. Chem., 934, 117302.
Abstract: In this work, a facile green approach for the synthesis of graphene quantum dots (GQDs) embedded on silicate network silver nanocrystals (GQDs-AgNCs(APTS)) is reported. Moreover, glassy carbon-GC electrodes were mod-ified with the prepared nanocomposite containing graphene quantum dots supported on silver nanocrystals (GQDs-AgNCs(APTS)) and applied for simultaneous detection of guanine (GA) and adenine (AD). The chemically modified electrode was assessed during the determination of purine bases by cyclic voltammetry-CV and dif-ferential pulse voltammetry-DPV. The incorporation of GQDs-AgNCs(APTS) nanocomposites over the surface of the GC electrode considerably enhances the anodic peak currents and decreases the adenine and guanine peak potentials. Compared to other electrodes, GQDs-AgNCs(APTS)/GC improved the electrochemical behavior towards the detection of adenine and guanine. At optimal conditions, calibration curves were obtained by DPV being linear in the range of 0.1-6.0 mu M and 0.1-5.0 mu M for guanine and adenine, respectively. The detec-tion limits of both guanine and adenine were estimated as 0.1 mu M. Additionally, interferences analyses were performed on the existence of other interferent compounds. Furthermore, the method developed for the iden-tification of GA and AD was proved using fish sperm DNA samples.
|