Rojas, F., Wanke, P., Coluccio, G., Vega-Vargas, J., & Huerta-Canepa, G. F. (2020). Managing slow-moving item: a zero-inflated truncated normal approach for modeling demand. PeerJ Comput. Sci., 6, 22 pp.
Abstract: This paper proposes a slow-moving management method for a system using of intermittent demand per unit time and lead time demand of items in service enterprise inventory models. Our method uses zero-inflated truncated normal statistical distribution, which makes it possible to model intermittent demand per unit time using mixed statistical distribution. We conducted numerical experiments based on an algorithm used to forecast intermittent demand over fixed lead time to show that our proposed distributions improved the performance of the continuous review inventory model with shortages. We evaluated multi-criteria elements (total cost, fill-rate, shortage of quantity per cycle, and the adequacy of the statistical distribution of the lead time demand) for decision analysis using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). We confirmed that our method improved the performance of the inventory model in comparison to other commonly used approaches such as simple exponential smoothing and Croston's method. We found an interesting association between the intermittency of demand per unit of time, the square root of this same parameter and reorder point decisions, that could be explained using classical multiple linear regression model. We confirmed that the parameter of variability of the zero-inflated truncated normal statistical distribution used to model intermittent demand was positively related to the decision of reorder points. Our study examined a decision analysis using illustrative example. Our suggested approach is original, valuable, and, in the case of slow-moving item management for service companies, allows for the verification of decision-making using multiple criteria.
|
Wanke, P., & Leiva, V. (2015). Exploring the Potential Use of the Birnbaum-Saunders Distribution in Inventory Management. Math. Probl. Eng., , 9 pp.
Abstract: Choosing the suitable demand distribution during lead-time is an important issue in inventory models. Much research has explored the advantage of following a distributional assumption different from the normality. The Birnbaum-Saunders (BS) distribution is a probabilistic model that has its genesis in engineering but is also being widely applied to other fields including business, industry, and management. We conduct numeric experiments using the R statistical software to assess the adequacy of the BS distribution against the normal and gamma distributions in light of the traditional lot size-reorder point inventory model, known as (Q, r). The BS distribution is well-known to be robust to extreme values; indeed, results indicate that it is a more adequate assumption under higher values of the lead-time demand coefficient of variation, thus outperforming the gamma and the normal assumptions.
|
Wanke, P., Ewbank, H., Leiva, V., & Rojas, F. (2016). Inventory management for new products with triangularly distributed demand and lead-time. Comput. Oper. Res., 69, 97–108.
Abstract: This paper proposes a computational methodology to deal with the inventory management of new products by using the triangular distribution for both demand per unit time and lead-time. The distribution for demand during lead-time (or lead-time demand) corresponds to the sum of demands per unit time, which is difficult to obtain. We consider the triangular distribution because it is useful when a distribution is unknown due to data unavailability or problems to collect them. We provide an approach to estimate the probability density function of the unknown lead-time demand distribution and use it to establish the suitable inventory model for new products by optimizing the associated costs. We evaluate the performance of the proposed methodology with simulated and real-world demand data. This methodology may be a decision support tool for managers dealing with the measurement of demand uncertainty in new products. (C) 2015 Elsevier Ltd. All rights reserved.
|