|
Eberhardt, J., Trifonov, T., Kurster, M., Stock, S., Henning, T., Wollbold, A., et al. (2022). Dynamical Architecture of the HD 107148 Planetary System. Astron. J., 163(5), 198.
Abstract: We present an independent Doppler validation and dynamical orbital analysis of the two-planet system HD 107148, which was recently announced in Rosenthal et al. Our detailed analyses are based on literature HIRES data and newly obtained HARPS and CARMENES radial-velocity (RV) measurements as part of our survey in search for additional planets around single-planet systems. We perform a periodogram analysis of the available HIRES and HARPS precise RVs and stellar activity indicators. We do not find any apparent correlation between the RV measurements and the stellar activity indicators, thus linking the two strong periodicities to a moderately compact multiplanet system. We carry out orbital fitting analysis by testing various one- and two-planet orbital configurations and studying the posterior probability distribution of the fitted parameters. Our results solidify the existence of a Saturn-mass planet (HD 107148b, discovered first) with a period of P (b) similar to 77.2 days and a second, eccentric (e (c) similar to 0.4), Neptune-mass exoplanet (HD 107148c) with an orbital period of P (c) similar to 18.3 days. Finally, we investigate the two-planet system's long-term stability and overall orbital dynamics with the posterior distribution of our preferred orbital configuration. Our N-body stability simulations show that the system is long-term stable and exhibits large secular osculations in eccentricity but in no particular mean motion resonance configuration. The HD 107148 system, consisting of a solar-type main-sequence star with two giant planets in a rare configuration, features a common proper-motion white dwarf companion and is therefore a valuable target for understanding the formation and evolution of planetary systems.
|
|
|
Jones, M. I., Wittenmyer, R., Aguilera-Gomez, C., Soto, M. G., Torres, P., Trifonov, T., et al. (2021). Four Jovian planets around low-luminosity giant stars observed by the EXPRESS and PPPS. Astron. Astrophys., 646, A131.
Abstract: We report the discovery of planetary companions orbiting four low-luminosity giant stars with M-star between 1.04 and 1.39 M-circle dot. All four host stars have been independently observed by the EXoPlanets aRound Evolved StarS (EXPRESS) program and the Pan-Pacific Planet Search (PPPS). The companion signals were revealed by multi-epoch precision radial velocities obtained in nearly a decade. The planetary companions exhibit orbital periods between similar to 1.2 and 7.1 yr, minimum masses of m(p)sin i similar to 1.8-3.7 M-J, and eccentricities between 0.08 and 0.42. With these four new systems, we have detected planetary companions to 11 out of the 37 giant stars that are common targets in the EXPRESS and PPPS. After excluding four compact binaries from the common sample, we obtained a fraction of giant planets (m(p) greater than or similar to 1- 2 M-J) orbiting within 5 AU from their parent star of f = 33.3(-7.1)(+9.0)%. This fraction is slightly higher than but consistent at the 1 sigma level with previous results obtained by different radial velocity surveys. Finally, this value is substantially higher than the fraction predicted by planet formation models of gas giants around stars more massive than the Sun.
|
|
|
Trifonov, T., Wollbold, A., Kurster, M., Eberhardt, J., Stock, S., Henning, T., et al. (2022). A New Third Planet and the Dynamical Architecture of the HD33142 HD 33142 Planetary System. Astron. J., 164(4), 156.
Abstract: Based on recently-taken and archival HARPS, FEROS, and HIRES radial velocities (RVs), we present evidence for a new planet orbiting the first ascent red giant star HD 33142 (with an improved mass estimate of M1.52 +/- 0.03 M-circle dot), already known to host two planets. We confirm the Jovian-mass planets HD 33142b and c, with periods of P-b = 330.0(-0.4)(+0.4) days and P-c = 810. 2(-4.2)(+3.8) days and minimum dynamical masses of m(b) sin i =1.26(-0.05)(+0.05) M-Jup and m(c) sin i = 0.89(-0.05)(+0.06) M-Jup, respectively. Furthermore, our periodogram analysis of the precise RVs shows strong evidence for a short-period Doppler signal in the residuals of a two-planet Keplerian fit, which we interpret as a third, Saturn-mass planet with m(d) sin i = 0.20(-)(0.03)(+0.02) M-Jup in a close-in orbit with an orbital period of P-d = 89.9(-0.1)(+0.1) days. We study the dynamical behavior of the three-planet system configuration with an N-body integration scheme, finding it to be long-term stable with the planets alternating between low and moderate eccentricity episodes. We also perform N-body simulations, including stellar evolution and second-order dynamical effects such as planet-stellar tides and stellar mass loss on the way to the white dwarf phase. We find that planets HD 33142b, c, and d are likely to be engulfed near the tip of the red giant branch phase due to tidal migration. These results make the HD 33142 system an essential benchmark for planet population statistics of the multiple-planet systems found around evolved stars.
|
|
|
Zakhozhay, O. V., Launhardt, R., Trifonov, T., Kunster, M., Reffert, S., Henning, T., et al. (2022). Radial velocity survey for planets around young stars (RVSPY) A transiting warm super-Jovian planet around HD 114082, a young star with a debris disk. Astron. Astrophys., 667, L14.
Abstract: Aims. We aim to detect planetary companions to young stars with debris disks via the radial velocity method.
Methods. We observed HD114082 during April 2018-August 2022 as one of the targets of our RVSPY program (Radial Velocity Survey for Planets around Young stars). We use the FEROS spectrograph, mounted to the MPG /ESO 2.2mtelescope in Chile, to obtain high signal-to-noise spectra and time series of precise radial velocities (RVs). Additionally, we analyze archival HARPS spectra and TESS photometric data. We use the CERES, CERES ++ and SERVAL pipelines to derive RVs and activity indicators and ExoStriker for the independent and combined analysis of the RVs and TESS photometry.
Results. We report the discovery of a warm super-Jovian companion around HD114082 based on a 109.8 +/- 0.4 day signal in the combined RV data from FEROS and HARPS, and on one transit event in the TESS photometry. The best-fit model indicates a 8.0 +/- 1.0M(Jup) companion with a radius of 1.00 +/- 0.03 R-Jup in an orbit with a semi-major axis of 0.51 +/- 0.01 au and an eccentricity of 0.4 +/- 0.04. The companions orbit is in agreement with the known near edge-on debris disk located at similar to 28 au. HD114082 b is possibly the youngest (15 +/- 6 Myr), and one of only three young ( <100 Myr) giant planetary companions for which both their mass and radius have been determined observationally. It is probably the first properly model-constraining giant planet that allows distinguishing between hot and cold-start models. It is significantly more compatible with the cold-start model.
|
|