|
Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Miralles, D. G., Beck, H. E., Siegmund, J. F., Alvarez-Garreton, C., et al. (2024). On the timescale of drought indices for monitoring streamflow drought considering catchment hydrological regimes. Hydrol. Earth Syst. Sci., 28(6), 1415–1439.
Abstract: There is a wide variety of drought indices, yet a consensus on suitable indices and temporal scales for monitoring streamflow drought remains elusive across diverse hydrological settings. Considering the growing interest in spatially distributed indices for ungauged areas, this study addresses the following questions: (i) What temporal scales of precipitation-based indices are most suitable to assess streamflow drought in catchments with different hydrological regimes? (ii) Do soil moisture indices outperform meteorological indices as proxies for streamflow drought? (iii) Are snow indices more effective than meteorological indices for assessing streamflow drought in snow-influenced catchments? To answer these questions, we examined 100 near-natural catchments in Chile with four hydrological regimes, using the standardised precipitation index (SPI), standardised precipitation evapotranspiration index (SPEI), empirical standardised soil moisture index (ESSMI), and standardised snow water equivalent index (SWEI), aggregated across various temporal scales. Cross-correlation and event coincidence analysis were applied between these indices and the standardised streamflow index at a temporal scale of 1 month (SSI-1), as representative of streamflow drought events. Our results underscore that there is not a single drought index and temporal scale best suited to characterise all streamflow droughts in Chile, and their suitability largely depends on catchment memory. Specifically, in snowmelt-driven catchments characterised by a slow streamflow response to precipitation, the SPI at accumulation periods of 12-24 months serves as the best proxy for characterising streamflow droughts, with median correlation and coincidence rates of approximately 0.70-0.75 and 0.58-0.75, respectively. In contrast, the SPI at a 3-month accumulation period is the best proxy over faster-response rainfall-driven catchments, with median coincidence rates of around 0.55. Despite soil moisture and snowpack being key variables that modulate the propagation of meteorological deficits into hydrological ones, meteorological indices are better proxies for streamflow drought. Finally, to exclude the influence of non-drought periods, we recommend using the event coincidence analysis, a method that helps assessing the suitability of meteorological, soil moisture, and/or snow drought indices as proxies for streamflow drought events.
|
|
|
Gimeno, F., Galleguillos, M., Manuschevich, D., & Zambrano-Bigiarini, M. (2022). A coupled modeling approach to assess the effect of forest policies in water provision: A biophysical evaluation of a drought-prone rural catchment in south-central Chile. Sci. Total Environ., 830, 154608.
Abstract: The effect of different forest conservation policies on water provision has been poorly investigated due to a lack of an integrative methodological framework that enables its quantification. We developed a method for assessing the effects of forest conservation policies on water provision for rural inhabitants, based on a land-use model coupled with an ecohydrological model. We used as a case study the Lumaco catchment, Chile, a territory dominated by native forests (NF) and non-native tree farms, with an extended dry period where nearly 12,600 people of rural communities get drinking water through water trucks. We analyzed three land-use policy scenarios: i) a baseline scenario based on historical land-cover maps; ii) a NF Recovery and Protection (NFRP) scenario, based on an earlier implementation of the first NF Recovery and Forestry Development bill; and iii) a Pristine (PR) scenario, based on potential vegetation belts; the latter two based on Dyna CLUE, and simulated between 1990 and 2015. Impacts on water provision from each scenario were computed with SWAT. The NFRP scenario resulted in an increase of 6974 ha of NF regarding the baseline situation, and the PR scenario showed an increase of 26,939 ha of NF. Despite large differences in NF areas, slight increases in inflows (Q) were found between the NFRP and the PR scenarios, with relative differences with respect to the baseline of 0.3% and 2.5% for NFRP and PR, respectively. Notwithstanding, these small differences in the NFRP scenario, they become larger if we analyze the cumulative values during the dry season only (December, January, and February), where they reach 1.1% in a normal year and 3.1% in a dry year. Flows increases were transformed into water truck costs resulting in up to 441,876 USD (monthly) of fiscal spending that could be avoided during a dry period.
|
|