|
Carrera, P., Campo, R., Mendez, R., Di Bella, G., Campos, J. L., Mosquera-Corral, A., et al. (2019). Does the feeding strategy enhance the aerobic granular sludge stability treating saline effluents? Chemosphere, 226, 865–873.
Abstract: The development and stability of aerobic granular sludge (AGS) was studied in two Sequencing Batch Reactors (SBRs) treating fish canning wastewater. R1 cycle comprised a fully aerobic reaction phase, while R2 cycle included a plug-flow anaerobic feeding/reaction followed by an aerobic reaction phase. The performance of the AGS reactors was compared treating the same effluents with variable salt concentrations (4.97-13.45 g NaCl/L) and organic loading rates (OLR, 1.80-6.65 kg CODs/(m(3).d)). Granulation process was faster in R2 (day 34) than in R1 (day 90), however the granular biomass formed in the fully aerobic configuration was more stable to the variable feeding composition. Thus, in R1 solid retention times (SRT), up to 15.2 days, longer than in R2, up to 5.8 days, were achieved. These long SRT5 values helped the retention of nitrifying organisms and provoked the increase of the nitrogen removal efficiency to 80% in R1 while it was approximately of 40% in R2. However, the presence of an anaerobic feeding/reaction phase increased the organic matter removal efficiency in R2 (80-90%) which was higher than in R1 with a fully aerobic phase (75-85%). Furthermore, in R2 glycogen-accumulating organisms (GAOs) dominated inside the granules instead of phosphorous-accumulating organisms (PADS), suggesting that GAOs resist better the stressful conditions of a variable and high-saline influent. In terms of AGS properties an anaerobic feeding/reaction phase is not beneficial, however it enables the production of a better quality effluent. (C) 2019 Elsevier Ltd. All rights reserved.
|
|
|
Cofre, C., Campos, J. L., Valenzuela-Heredia, D., Pavissich, J. P., Camus, N., Belmonte, M., et al. (2018). Novel system configuration with activated sludge like-geometry to develop aerobic granular biomass under continuous flow. Bioresour. Technol., 267, 778–781.
Abstract: A novel continuous flow system with “flat geometry” composed by two completely mixed aerobic tanks in series and a settler was used to promote the formation of aerobic granular sludge. Making similarities of this system with a typical sequencing batch reactor (SBR), for aerobic granules cultivation, the value of the tank 1/tank 2 vol ratio and the biomass recirculation rate would correspond with the feast/famine length ratio and the length of the operational cycle, respectively, while the settler upflow liquid velocity imposed would be related to the settling time. From the three experiments performed the best results were obtained when the tank 1/tank 2 vol ratio was of 0.28, the sludge recycling ratio of 0.25 and the settler upflow velocity of 2.5 m/h. At these conditions the aggregates had settling velocities between 29 and 113 m/h, sludge volume index at 10 min (SVI10) of 70 mL/g TSS and diameters between 1.0 and 5.0 mm.
|
|
|
Crutchik, D., Franchi, O., Caminos, L., Jeison, D., Belmonte, M., Pedrouso, A., et al. (2020). Polyhydroxyalkanoates (PHAs) Production: A Feasible Economic Option for the Treatment of Sewage Sludge in Municipal Wastewater Treatment Plants? Water, 12(4), 12 pp.
Abstract: Sludge is a by-product of municipal wastewater treatment plants (WWTPs) and its management contributes significantly to the operating costs. Large WWTPs usually have anaerobic sludge digesters to valorize sludge as methane and to reduce its mass. However, the low methane market price opens the possibility for generating other high value-added products from the organic matter in sludge, such as polyhydroxyalkanoates (PHAs). In this work, the economic feasibility of retrofitting two types of WWTPs to convert them into biofactories of crude PHAs was studied. Two cases were analyzed: (a) a large WWTP with anaerobic sludge digestion; and (b) a small WWTP where sludge is only dewatered. In a two-stage PHA-production system (biomass enrichment plus PHAs accumulation), the minimum PHAs cost would be 1.26 and 2.26 US$/kg PHA-crude for the large and small WWTPs, respectively. In a single-stage process, where a fraction of the secondary sludge (25%) is directly used to accumulate PHAs, the production costs would decrease by around 15.9% (small WWTPs) and 19.0% (large WWTPs), since capital costs associated with bioreactors decrease. Sensitivity analysis showed that the PHA/COD (Chemical Oxygen Demand) yield is the most crucial parameter affecting the production costs. The energy, methane, and sludge management prices also have an essential effect on the production costs, and their effect depends on the WWTP's size.
|
|
|
Jungles, M. K., Val del Rio, A., Mosquera-Corral, A., Campos, J. L., Mendez, R., & Costa, R. H. R. (2017). Effects of Inoculum Type and Aeration Flowrate on the Performance of Aerobic Granular SBRs. Processes, 5(3), 10 pp.
Abstract: Aerobic granular sequencing batch reactors (SBRs) are usually inoculated with activated sludge which implies sometimes long start-up periods and high solids concentrations in the effluent due to the initial wash-out of the inoculum. In this work, the use of aerobic mature granules as inoculum in order to improve the start-up period was tested, but no clear differences were observed compared to a reactor inoculated with activated sludge. The effect of the aeration rate on both physical properties of granules and reactor performance was also studied in a stable aerobic granular SBR. The increase of the aeration flow rate caused the decrease of the average diameter of the granules. This fact enhanced the COD and ammonia consumption rates due to the increase of the DO level and the aerobic fraction of the biomass. However, it provoked a loss of the nitrogen removal efficiency due to the worsening of the denitrification capacity as a consequence of a higher aerobic fraction.
|
|
|
Pedrouso, A., Tocco, G., val del Rio, A., Carucci, A., Morales, N., Campos, J. L., et al. (2020). Digested blackwater treatment in a partial nitritation-anammox reactor under repeated starvation and reactivation periods. J. Clean Prod., 244, 9 pp.
Abstract: Wastewater source-separation and on-site treatment systems face severe problems in wastewater availability. Therefore, the effect of repeated short-term starvation and reactivation periods on a partial nitritation-anammox (PN/AMX) based processes were assessed treating digested blackwater at room temperature. Two sequencing batch reactors (SBR) were operated, one of them during 24 h/day the whole week (SBR-C, which served as control) and the other with repeated starvation/reactivation periods during the nights and the weekends (SBR-D), using simulated blackwater (300 mg N/L and 200 mg COD/L) as substrate. Results showed no remarkable differences in overall processes performance between both reactors, achieving total nitrogen removal efficiencies (NRE) around 90%. Furthermore, no significant variations were measured in specific activities, except for the aerobic heterotrophic one that was lower in SBR-D, presumably due to the exposure to anoxic conditions. Then, the technical feasibility of applying the PN/AMX system to treat real blackwater produced in an office building during working hours was successfully proved in a third reactor (SBR-R), with the same starvation/reactivation periods tested in SBR-D. Despite the low temperature, ranging from 14 to 21 degrees C, total NRE up to 95% and total nitrogen concentration in the effluent lower than 10 mg N/L were achieved. Moreover, the PN/AMX process performance was immediately recovered after a long starvation period of 15 days (simulating holidays). Results proved for the first time the feasibility and long-term stability (100 days) of applying the PN/AMX processes for the treatment (and potential reuse) of blackwater in a decentralized system where wastewater is not always available. (C) 2019 Elsevier Ltd. All rights reserved.
|
|