|
Cabrera, M., Cordova-Lepe, F., Gutierrez-Jara, J. P. -, & Vogt-Geisse, K. (2021). An SIR-type epidemiological model that integrates social distancing as a dynamic law based on point prevalence and socio-behavioral factors. Sci. Rep., 11(1), 10170.
Abstract: Modeling human behavior within mathematical models of infectious diseases is a key component to understand and control disease spread. We present a mathematical compartmental model of Susceptible-Infectious-Removed to compare the infected curves given by four different functional forms describing the transmission rate. These depend on the distance that individuals keep on average to others in their daily lives. We assume that this distance varies according to the balance between two opposite thrives: the self-protecting reaction of individuals upon the presence of disease to increase social distancing and their necessity to return to a culturally dependent natural social distance that occurs in the absence of disease. We present simulations to compare results for different society types on point prevalence, the peak size of a first epidemic outbreak and the time of occurrence of that peak, for four different transmission rate functional forms and parameters of interest related to distancing behavior, such as: the reaction velocity of a society to change social distance during an epidemic. We observe the vulnerability to disease spread of close contact societies, and also show that certain social distancing behavior may provoke a small peak of a first epidemic outbreak, but at the expense of it occurring early after the epidemic onset, observing differences in this regard between society types. We also discuss the appearance of temporal oscillations of the four different transmission rates, their differences, and how this oscillatory behavior is impacted through social distancing; breaking the unimodality of the actives-curve produced by the classical SIR-model.
|
|
|
Canals, C., Maroulis, S., Canessa, E., Chaigneau, S., & Mizala, A. (2022). Mechanisms Underlying Choice-Set Formation: The Case of School Choice in Chile. Soc. Sci. Comput. Rev., Early Access.
Abstract: Many decisions involve selecting among many more options than an individual can effectively examine and consider. Therefore, people usually consider smaller and different “choice sets” as viable options. To better understand the processes affecting choice-set formation, we developed a computational model of how households become aware of potential choices in a context for which understanding household decision-making has important public policy implications: market-based reforms in education. In the model, households learn about the schools to which they can send their children through three mechanisms: find out about geographically proximate schools, access to publicly available information, and information gathered from interactions with other households. We calibrated the model using data from four cities in Chile, where students are not required to attend their neighborhood school. We then used the model to conduct hypothetical computational experiments that assessed how each mechanism impacted the sets of schools known to households before they make their choice (their “awareness set”). We found that the inclusion of a social interaction mechanism was crucial for producing simulated awareness sets that matched the awareness sets provided in a survey conducted by the Chilean Ministry of Education. We also found that the social interaction mechanism played the largest role in determining the quality and price range of the choices available in households’ awareness sets. Our findings highlight the importance of social interactions in a stage of decision-making before the direct impact of other individuals is typically made explicit. Moreover, it validates an approach that can be used in future models where understanding how decision-makers become aware of their options may be as important as the way they choose among them.
|
|
|
Gutierrez-Jara, J. P., Vogt-Geisse, K., Cabrera, M., Cordova-Lepe, F., & Munoz-Quezada, M. T. (2022). Effects of human mobility and behavior on disease transmission in a COVID-19 mathematical model. Sci. Rep., 12(1), 10840.
Abstract: Human interactions and perceptions about health risk are essential to understand the evolution over the course of a pandemic. We present a Susceptible-Exposed-Asymptomatic-Infectious-Recovered-Susceptible mathematical model with quarantine and social-distance-dependent transmission rates, to study COVID-19 dynamics. Human activities are split across different location settings: home, work, school, and elsewhere. Individuals move from home to the other locations at rates dependent on their epidemiological conditions and maintain a social distancing behavior, which varies with their location. We perform simulations and analyze how distinct social behaviors and restrictive measures affect the dynamic of the disease within a population. The model proposed in this study revealed that the main focus on the transmission of COVID-19 is attributed to the “home” location setting, which is understood as family gatherings including relatives and close friends. Limiting encounters at work, school and other locations will only be effective if COVID-19 restrictions occur simultaneously at all those locations and/or contact tracing or social distancing measures are effectively and strictly implemented, especially at the home setting.
|
|